Marine Flavobacteriaceae produce zeaxanthin via the mevalonate pathway
-
Graphical Abstract
-
Abstract
Zeaxanthin, an oxygenated carotenoid derivative with potent antioxidative properties, is produced by many organism taxa. Flavobacteriaceae are widely distributed in marine environments; however, the zeaxanthin biosynthesis property in this family remains incompletely explored. Here, we characterized zeaxanthin production by marine Flavobacteriaceae strains and elucidated underlying molecular mechanisms. Eight Flavobacteriaceae strains were isolated from the phycosphere of various dinoflagellates. Analyses of the zeaxanthin production in these strains revealed yields ranging from 5 to 3289 µg/g of dry cell weight. Genomic and molecular biology analyses revealed the biosynthesized zeaxanthin through the mevalonate (MVA) pathway diverging from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway commonly observed in most Gram-negative bacteria. Furthermore, comprehensive genome analyses of 322 culturable marine Flavobacteriale strains indicated that the majority of Flavobacteriaceae members possess the potential to synthesize zeaxanthin using precursors derived from the MVA pathway. These data provide insight into the zeaxanthin biosynthesis property in marine Flavobacteriaceae strains, highlighting their ecological and biotechnological relevance.
-
-