
Citation: | Nimaichand Salam, Wen-Dong Xian, Mipeshwaree Devi Asem, Min Xiao, Wen-Jun Li. 2021: From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. Marine Life Science & Technology, 3(2): 132-147. DOI: 10.1007/s42995-020-00064-w |
Bacterial cultivation was revolutionized with the accidental discovery of agar as a solidifying agent in the preparation of culture media in the late nineteenth century (Hesse 1992). Subsequently, plenty of bacterial and fungal strains have been brought into pure cultures in laboratory conditions for downstream investigation. As of April 2020, 16, 529 bacterial and archaeal species have been described with valid nomenclature (https://lpsn.dsmz.de/text/numbers; accessed on 24 May 2020). These described species largely fall within the bacterial phyla of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Rinke et al. 2013).
Bacterial diversity has been largely estimated on the basis of molecular markers, particularly the 16S rRNA gene sequence (Pace 1997). A systematic comparison between the described bacterial species and the global bacterial diversity indices indicated that most (> 99%) bacteria escaped cultivation, i.e., not-yet-cultured (Bernard et al. 2000; Hofer 2018; Kim and Yu 2012; Lok 2015; Overmann et al. 2017). The culture-elusive bacteria are, therefore, often considered as the "microbial dark matter" (Lok 2015). Their unculturability may be ascribed to various factors, including actual resistance to grow on conventional media and requirement of specific growth factors or conditions (Vartoukian et al. 2010). In addition, many biodiversity hotspots remain underexplored even by the conventional approaches (Mincer et al. 2002; Nimaichand et al. 2012, 2013; Qin et al. 2009).
Much effort has been devoted to cultivation of the not-yet-cultured microbial majority over the last decades (Asem et al. 2018; Rinke et al. 2014; Zhou et al. 2018). The conventional approach is often tedious, with a strong bias to the isolation of certain dominant bacterial groups. Frequently, this leads to isolation of already known strains (Fig. 1). However, many novel strains were effectively isolated by employing selective isolation procedures through pre-treating samples (Nimaichand et al. 2012) and/or through optimizing media to mimic the natural environment (Kaeberlein et al. 2002). Moreover, certain strains could not cope with the simulated environment during subsequent cultivation, and thus lose their viability. In recent years, development and advancement of sequencing technology have helped devise new and advanced culturomics approaches (Cross et al. 2019; Lagier et al. 2016; Xian et al. 2020). Despite their limitations, these new developments are expected to provide access to many novel previously uncultivated bacteria, and to divulge their metabolic pathways as well as ecological roles.
Factors causing unculturability for microorganisms have been discussed in several reviews (Gutleben et al. 2018; Overmann et al. 2017; Vartoukian et al. 2010). The most common factor that limits our capacity to culture bacteria is the lack of understanding of suitable growth conditions. Conversely, a considerable number of bacteria exist in the form of biofilms in natural habitats (Nikolaev and Plakunov 2007); and no sufficient methods can effectively segregate a particular species from a complex community without affecting their viability (Fig. 2).
In the marine ecosystem, bacteria form aggregates on the available particulate matter (Teeling et al. 2012). The bacterial diversity profile is highly diverse in marine biofilms, and consists of several unclassified groups, including members of the classes Solibacteres, Acidobacteria, and Blastocatellia (Zhang et al. 2019). Moreover, > 70% of the bacterial community in hot spring microbial mats belong to not-yet-cultured microbial groups (Xian et al. 2020). Similarly, uncultured microbial communities are dominant in biofilms associated with most of other unique and underexplored environments, such as deserts, acid mine drainages, human guts (Amin et al. 2020; Lear et al. 2009; Lozupone et al. 2012; Madinger et al. 2016), or even in the largely explored soil ecosystem (Lindahl 1996) where they aggregate and adhere to any available surface.
Within a biofilm, microorganisms occur as complex multispecies communities (Stoodley et al. 2002). The resistance of a biofilm community to external stresses is linked to its complex coordination (Fig. 2), often related to quorum sensing, rather than the physiological activity of individual cells (Ratzke and Gore 2018). This closed coordination involved cross-signalling in chemical language within the communities through cell-to-cell interactions (Zengler and Palsson 2012). The microbial populations therein are, therefore, adapted to a more specialized life form, which is physiologically and evolutionarily different from free-living planktonic forms of the constituent populations (Burmølle et al. 2014). In certain cases, the genomic constituents of the biofilm communities are streamlined, indicating a probable dependency of individual cells on the community interactions (He et al. 2015; Mee et al. 2014; Morris et al. 2012).
Diffusion of small molecules, for example, amino acids, siderophores, and vitamins, is part of the central metabolism in biofilm communities (Cordero and Datta 2016; D'Onofrio et al. 2010) (Fig. 2). When proximal microbial populations share complementary metabolic stocks, they perform physiological functions better than planktonic free-living cells (Cordero and Datta 2016). The dependency of most biofilm microbial populations on the neighbouring cells for growth factors is one major factor that makes them recalcitrant to culture in its pure form (Mee et al. 2014). Another important factor of unculturability of biofilm components is the adaptive gene loss within the microbial population that drives species co-occurrence (Zelezniak et al. 2015).
In microbial ecology, the –omics study based on nucleic acids (metagenomics and metatranscriptomics), peptides and small molecules (metaproteomics), and metabolites (metabolomics) has advanced our understanding of the microbial biosphere (Gutleben et al. 2018). Development in sequencing technology, particularly the rRNA sequencing, has helped us to determine microbial community structure. Yet, their ecophysiological roles are largely unknown and cannot be predicted (Narihiro et al. 2009). Additionally, environmental heterogeneity and inter- and intra-species competition of resources influence the spatial distribution pattern of the bacterial communities. Consequently, relationship cannot be determined between the dynamic bacterial community structure and their in situ function in the habitat without an understanding of local microenvironments (Okabe et al. 2011). Besides, the physiological properties predicted from cultured representatives may not also sufficiently define the actual function in the ecology. Advanced techniques, such as fluorescence in situ hybridization, microsensors, and microautoradiography, are now employed to analyse the in situ function of single microbial communities (Okabe et al. 2004). A combined use of the above-mentioned techniques can sufficiently connect specific microbial population or cells to a specific metabolic function within complex microbial communities.
Alternatively, the physiology of one microorganism may be assessed from its genome (Wagner et al. 2002), but it may not always be generalized. For example, some bacteria are versatile in substrate utilization (Kragelund et al. 2006), whereas others are very specialized (Andreasen and Nielsen 2000). Many bacteria possess an unusual physiology and ecology. Despite the limitations, metagenomes-assembled genomes and single-cell genomics are used often to determine the ecological and physiological aspects of uncultivated microorganisms (Rinke et al. 2013). In most cases, a good quality genome can provide a more accurate prediction about the lifestyle of single organisms. For example, the genome quality of single-cell amplified genomes is usually very low; but an improved method devised by Rinke et al. (2014) based on fluorescence-activated cell sorting-based single-cell genomics generates up to 1 μg of genomic DNA for single microbial cells. Based on the sensitivity of the sequencing protocols, an average of~50% completeness may be recorded.
Coming to the concept of ecophysiology, let us consider the example of the phylum Chloroflexi. Cultivated members of Chloroflexi are anoxygenic photoautotrophs, aerobic chemoheterotrophs, thermophiles, and anaerobes that obtain their energy by dehalogenation of organic chlorinated compounds (Gupta et al. 2013). Chloroflexi lacks a typical lipid outer cell member, and is considered a monoderm (Sutcliffe 2010, 2011). Members of this phylum have often eluded cultivation, despite representing a larger portion in the community structure of many ecosystems, including freshwater and marine environments (up to 30% (Mehrshad et al. 2018)), extreme environments such as hot springs (Lau et al. 2009), and hypersaline microbial mats (Ley et al. 2006) and activated sludge treatment plants (Kragelund et al. 2007; Speirs et al. 2019). Some common features, such as slow growth and syntrophy, make Chloroflexi (particularly the classes Anaerolineae and Caldilineae) recalcitrant to isolation. Growth of these groups is easily outcompeted by fast-growing heterotrophic anaerobes.
The first genomic insights related to the lifestyle of uncultivated Chloroflexi as being flagellated, aerobic photoheterophic and capacity to demineralize organic matter was predicted from a lake metagenome (Denef et al. 2016). Analysis of the 117 metagenomes of Chloroflexi from lakes, reservoirs, and river samples showed that there is a remarkably high diversity of Chloroflexi among the aquatic ecosystem. However, different lineages have different distribution patterns among the analysed samples. For example, cluster JG30-KF-CM66 sequences are distributed preferentially in rivers rather than in lakes. GOS datasets are basically freshwater dominant lineages, instead of marine groups as originally assigned; or SAR202-related clades are not related to water columns (Mehrshad et al. 2018). Also, these genomes showed the presence of genes necessary for central carbohydrate metabolism and denitrification, and the absence of assimilatory sulphate reduction gene. This suggests a totally heterotrophic lifestyle for Chloroflexi. The absence of genes encoding assimilatory sulphate reduction could be related to the utilization of exogenous reduced sulphur for growth, as shown with the SAR11 group (Tripp et al. 2008). Energy generation in Chloroflexi is generally driven through rhodopsin (prediction of carotenoid biosynthesis in Chloroflexia) or aerobic anoxygenic phototrophy (presence of genes encoding enzymes for PS-Ⅱ, and bacteriochlorophyl and carotenoid biosynthesis; absence of carbon fixing pathway); and is depicted also among different lineages of Chloroflexi (Mehrshad et al. 2018). In another study, it was predicted that there was a massive gene loss for phototrophism in most lineages of Chloroflexi. However, a few lineages acquired phototrophy later via horizontal gene transfer from a different ancestral donor (Ward et al. 2018).
To meet the needs of various analyses, it is necessary to obtain microbes in pure culture. Exploration of new microbial resources was initiated mostly on the basis of searching for new microbial metabolites for the treatment of human diseases. The conventional plating method was largely successful until the mid-1950s. Subsequently, the isolation of new isolates became redundant as the majority of the isolation procedures was focused on soil microbes. Here, there was a biased selection for fastidious isolates on the growth medium. Over the years, many research groups have attempted new techniques, including supplementation of antibiotics to inhibit the growth of fungi and fast-growing bacteria (Williams and Davies 1965), emending media with compounds that reduce growth stress (Martin et al. 1976), or overlaying of porous membranes on isolation plates (Hirsch and Christensen 1983). Dilution culture (Button et al. 1993), use of diffusion chambers (Kaeberlein et al. 2002), co-culture (D'Onofrio et al. 2010), and physical cell sorting using microfluidic streaks (Jiang et al. 2016) are a few of the other techniques that have led to the description of new taxa. However, the overlap is still very low between the number of cultured and not-yet-cultured microorganisms.
Our laboratory has been focusing on microbial exploration in extreme and unusual habitats, particularly hypersaline environments, hot springs, deserts, caves, alkaline soils, acid mine drainage, marine and estuary, and tissues of medicinal plants, and determining the accurate taxonomy of the cultivated isolates (Fig. 3). To date, we have finished the description of at least 500 novel bacterial and archaeal taxa, most of which were recovered by improving isolation procedures, including pre-treatment conditions, media optimization, and designing new isolation methods (Asem et al. 2018; Qin et al. 2009; Xian et al. 2020). These novel microbial taxa consisted of one new class, 23 new orders/sub-orders, 29 new families, and over 80 new genera.
Nutrient concentrations in extreme habitats are mostly limited. For example, hypersaline environments have high salt contents; chemical composition of salts may differ depending on the origin of the habitats (Ventosa et al. 2008). Adaptability to the unusually high content of salts limits microbial distribution in such environments (Ventosa et al. 2015). Also, microbial community structures differ greatly along an ecological gradient of hypersaline soil and sediments (Hollister et al. 2010). Based on the physiology of the microorganisms at different concentrations of salts, they are classified as non-halophiles (< 1% NaCl), halotolerant (non-halophiles but tolerate as high as 25% NaCl), slight halophiles (optimal growth with 1–3% NaCl), moderate halophiles (optimal growth with 3–15% NaCl), and extreme halophiles (grow optimally with 15–25% NaCl or with saturated salt concentrations) (Kushner and Kamekura 1988).
Halophilic and halotolerant microorganisms were isolated usually by supplementing high concentrations of salt (10–30% NaCl or KCl) in the conventional media (Cui et al. 2001b; Jiang et al. 2006; Li et al. 2004a, c) (Fig. 3j, k). All the halophilic/halotolerant microorganisms isolated in our laboratory are listed in Table 1. Mechanisms for the dependency of these halophiles to different concentrations of salts (Na+, K+, Ca2+, Mg2+) seem to be complex (Jiang et al. 2006). However, halophilic bacteria and archaea respond to the osmotic pressure of the high salt concentration in the environment most likely by subsequent cellular adaptation including morphological changes (Pianetti et al. 2009) and excretion of exopolysaccharide layers (Liu et al. 2019; Xue et al. 2018).
Name of novel taxa | Highest taxonomic rank proposed with the novel taxa | Isolation condition* | Source/sampling site | References |
Actinopolyspora alba | Novel species | CCMS + 15% NaCl/37 ℃/ 3 weeks | Baicheng salt field/Xinjiang, China | (Tang et al. 2011a) |
Actinopolyspora erythraea | Novel species | CCMS + 15% NaCl/37 ℃/3 weeks | Baicheng salt field/Xinjiang, China | (Tang et al. 2011a) |
Aidingimonas halophila | Novel genus | CCMS | Aiding lake sediment/Xinjiang, China | (Wang et al. 2009b) |
Alkalibacillus halophilus | Novel species | SG + 25% NaCl/37 ℃/2–3 weeks | Hypersaline soil/Xinjiang, China | (Tian et al. 2007) |
Alteromonas halophila | Novel species | MA + 20% NaCl/28 ℃/1–4 weeks | Sea anemone/Naozhou Island, China | (Chen et al. 2009i) |
Amycolatopsis halophila | Novel species | CCMS / 37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010a) |
Amycolicicoccus subflavus | Novel genus | ASW + 2.4% NaCl/30 ℃/2 days | Oil-polluted saline soil/Shengli Oilfield, China | (Wang et al. 2010) |
Arthrobacter halodurans | Novel species | MA + 20% NaCl/28 ℃/2 weeks | Sea water/Naozhou Island, South China Sea | (Chen et al. 2009g) |
Brevibacterium album | Novel species | ISP5 + 15% KCl / 37 ℃/2 weeks | Saline soil/ Xinjiang, China | (Tang et al. 2008c) |
Corynebacterium halotolerans | Novel species | ISP5 + 15% KCl + trace elements /28 ℃ / 2–3 days | Saline soil/Xinjiang, China | (Chen et al. 2004) |
Egibacter rhizosphaerae | Novel order | R2A + 10% NaCl (pH 10)/ 30 ℃ / 4 weeks | Rhizosphere of Tamarix hispida/Xinjiang, China | (Zhang et al. 2016e) |
Egicoccus halophilus | Novel order | MA (pH 10)/30 ℃/4 weeks | Saline-alkali soil/Shihezi, Xinjiang, China | (Zhang et al. 2016a) |
Georgenia alba | Novel species | R2A/28 ℃/5 days | Desert sand/Saudi Arabia | (Li et al. 2019) |
Georgenia deserti | Novel species | R2A/28 ℃/5 days | Desert sand/Saudi Arabia | (Hozzein et al. 2018) |
Georgenia halophila | Novel species | GTY + 10% NaCl/37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010b) |
Gracilibacillus halophilus | Novel species | MA + 20% NaCl/30 ℃/4 weeks | Saline soil/Qinghai, China | (Chen et al. 2008c) |
Gracilibacillus quinghaiensis | Novel species | MA/28 ℃ | Xiaochaidamu salt lake sediment/Qinghai, China | (Chen et al. 2008d) |
Gracilibacillus saliphilus | Novel species | ISP5 + 10% NaCl | Ebinur Lake sample/Xinjiang, China | (Tang et al. 2009c) |
Haladaptatus pallidirubidus | Novel species | CCMS/30 ℃/4 weeks | Saline soil from Lop Nur/Xinjiang, China | (Liu et al. 2014) |
Halegenticoccus soli | Novel genus | GM + 20% NaCl / 37 ℃ / 4 weeks | Ebi Lake soil/ Xinjiang, China | (Liu et al. 2019) |
Haloactinopolyspora alkaliphila | Novel species | CCMS / 30 ℃/3 weeks | Saline-alkali soil/Xinjiang, China | (Zhang et al. 2014) |
Haloactinobacterium album | Novel genus | GTY + 10% NaCl / 37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010e) |
Haloactinopolyspora alba | Novel genus | CCMS/37 ℃/3 weeks | Qijiaojing lake sample/Xinjiang, China | (Tang et al. 2011b) |
Haloactinospora alba | Novel genus | CCMS + 10% NaCl/37 ℃/3 weeks | Salt lake/Xinjiang, China | (Tang et al. 2008a) |
Halobacillus hunanensis | Novel species | MA + 30% NaCl/28 ℃/1–4 weeks | Brine sample from Xiangli Salt Mine/Hunan, China | (Peng et al. 2009) |
Halobacillus naozhouensis | Novel species | MA + 5% NaCl / 28 ℃/2 weeks | Sea anemone/Naozhou, China | (Chen et al. 2009f) |
Halobacillus salsuginis | Novel species | MA + 5% NaCl / 30 ℃/2 weeks | Brine sample from Xiangli Salt Mine/Hunan, China | (Chen et al. 2009k) |
Haloechinothrix alba | Novel genus | CCMS + 10% NaCl/37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010c) |
Haloglycomyces albus | Novel genus | CCMS + 10% NaCl/ 37 ℃/2–4 weeks | Hypersaline soil/Xinjiang, China | (Guan et al. 2009) |
Halomonas flava | Novel species | GTY + 10% NaCl / 37 ℃ / 1 week | Qijiaojing Lake sediment/Xinjiang, China | (Chen et al. 2011a) |
Halomonas litopenaei | Novel species | MA / 28 ℃/5 days | Larviculture water/ Donghai Island, Guangdong, China | (Xue et al. 2018) |
Halomonas lutea | Novel species | ISP5 + 10% NaCl/37 ℃ | Ebinur Lake sample/Xinjiang, China | (Wang et al. 2008) |
Halomonas nanhaiensis | Novel species | ISP5 + 3.5% sea salt /8 ℃/30 days | Sediment sample/South China Sea | (Long et al. 2013) |
Halomonas qijiaojingensis | Novel species | GTY + 10% NaCl / 37 ℃/1 week | Qijiaojing Lake sediment/Xinjiang, China | (Chen et al. 2011a) |
Halomonas taeanensis | Novel species | MA + 8% NaCl / 35 ℃ / 2 days | Solar saltern sample/Taean, Korea | (Lee et al. 2005) |
Halomonas xianhensis | Novel species | SSDM | Saline soil/ Xianhe, Shangdong, China | (Zhao et al. 2012) |
Halomonas xiaochaidanensis | Novel species | R2A + ASW/15 ℃/3 days (after enrichment for 2 days in the same liquid media) | Xiaochaidan Lake sediment/Tibet, China | (Liu et al. 2016) |
Halomonas zhanjiangensis | Novel species | MA / 28 ℃ / 1 week | Sea urchin/Naozhou Island, China | (Chen et al. 2009j) |
Halopelagius fulvigenes | Novel species | GM + 10% NaCl/37 ℃/4 weeks | Qijiaojing lake soil/Xinjiang, China | (Liu et al. 2013) |
Isoptericola halotolerans | Novel species | HM + 20% NaCl/28 ℃/1 week | Saline soil/Qinghai, China | (Zhang et al. 2005) |
Jeotgalicoccus huakuii | Novel species | LB / 30 ℃ | Seaside soil/Shandong, China | (Guo et al. 2010) |
Jeotgalicoccus marinus | Novel species | MA + 20% NaCl/28 ℃/4 weeks | Sea urchin/Leizhou Bay, China | (Chen et al. 2009l) |
Kocuria aeqyptia | Novel species | HM / 28 ℃/1 week | Saline, alkaline desert soil/Egypt | (Li et al. 2006a) |
Kocuria halotolerans | Novel species | ISP5 + 10% NaCl/37 ℃/3 weeks | Saline soil from Ganjiahu Suosuo Forest/Xinjiang, China | (Tang et al. 2009d) |
Lentibacillus salis | Novel species | MA + 10% NaCl/35 ℃/3 days | Ayakekum salt lake soil/Xinjiang, China | (Lee et al. 2008) |
Lipingzhangella halophila | Novel genus | MA + 2% NaCl (pH 10)/30 ℃/4 weeks | Gurbangtϋnggϋt desert soil/Xinjiang, China | (Zhang et al. 2016c) |
Marinococcus halotolerans | Novel species | SG + 25% MgCl2/28 ℃/2 weeks | Hypersaline soil/Qinghai, China | (Li et al. 2005b) |
Marinococcus luteus | Novel species | ISP5 + 10% NaCl/28 ℃/1 week | Barkol Lake sediment/Xinjiang, China | (Wang et al. 2009a) |
Microbacterium album | Novel species | R2A/28 ℃/5 days | Desert sample/Saudi Arabia | (Yang et al. 2018b) |
Microbacterium deserti | Novel species | R2A/28 ℃/5 days | Desert sample/Saudi Arabia | (Yang et al. 2018b) |
Microbacterium halotolerans | Novel species | ISP5 + 15% KCl/28 ℃/2 weeks | Hypersaline soil/Qinghai, China | (Li et al. 2005a) |
Microbulbifer halophilus | Novel species | ISP5 + 10% MgCl2/37 ℃ | Saline soil/Xinjiang, China | (Tang et al. 2008b) |
Myceligenerans halotolerans | Novel species | GTY + 5% KCl/37 ℃/2 weeks | Qijiaojing salt lake soil/Xinjiang, China | (Wang et al. 2011) |
Nesterenkonia halophila | Novel species | SG + 25% KCl/28 ℃/2 weeks | Saline soil/ Xinjiang, China | (Li et al. 2008) |
Nesterenkonia halotolerans | Novel species | ISP5 + 15% MgCl2/28 ℃/2 weeks | Hypersaline soil/ Xinjiang, China | (Li et al. 2004b) |
Nesterenkonia natronophila | Novel species | PCA + 2% NaCl (pH 10)/30 ℃/10 days | Lake Magadi sediment/Arusha, Tanzania | (Machin et al. 2019) |
Nesterenkonia rhizosphaerae | Novel species | ISP5 (pH 10)/30 ℃/4 weeks | Desert rhizospheric soil of Reaumuria soongorica/Fukang, Xinjiang, China | (Wang et al. 2014) |
Nesterenkonia xinjiangensis | Novel species | ISP5 + 15% KCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2004b) |
Nocardiopsis ansamitocini | Novel species | ISP2 (pH 10)/30 ℃/4 weeks | Saline-alkali soil/Xinjiang, China | (Zhang et al. 2016b) |
Nocardiopsis litoralis | Novel species | MA + 10% NaCl / 25 ℃ / 2 weeks | Sea anemone/Naozhou Island, China | (Chen et al. 2009h) |
Nocardiopsis salina | Novel species | ISP5 + 20% NaCl/28 ℃/1 week | Hypersaline soil/Xinjiang, China | (Li et al. 2004c) |
Nocardiopsis terrae | Novel species | MA / 30 ℃/2 weeks | Saline soil from Qaidam Basin/Qinghai, China | (Chen et al. 2010c) |
Nocardiopsis xinjiangensis | Novel species | ISP5 + 10% NaCl/28 ℃/4 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003a) |
Ornithinicoccus halotolerans | Novel species | R2A (pH 10)/30 ℃/3 weeks | Karamayi desert sample/Xinjiang, China | (Zhang et al. 2016d) |
Paracoccus saliphilus | Novel species | ISP5 + 10% NaCl/28 ℃/2 weeks | Saline soil/Xinjiang, China | (Wang et al. 2009c) |
Paraliobacillus quinghaiensis | Novel species | MA + 10% NaCl/28 ℃/4 weeks | Sediment sample of Dabuxun salt lake/Qinghai, China | (Chen et al. 2009d) |
Phytoactinopolyspora endophytica | Novel genus | R2A / 28 ℃ / 4 weeks | Root tissue of Glycyrrhiza uralensis/Yili county, Xinjiang, China | (Li et al. 2015) |
Pontibacillus halophilus | Novel species | MA + 20% NaCl / 28 ℃ / 4 weeks | Sea urchin/Leizhou Bay, China | (Chen et al. 2009m) |
Pontibacillus litoralis | Novel species | MA/28 ℃/2 weeks | Sea anemone/Naozhou Island, China | (Chen et al. 2010d) |
Prauserella aidingensis | Novel species | CCMS/37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Prauserella alba | Novel species | SCA + 20% NaCl/28 ℃/4 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003c) |
Prauserella flava | Novel species | CCMS / 37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Prauserella halophila | Novel species | SCA + 20% NaCl/28 ℃/4 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003c) |
Prauserella salsuginis | Novel species | CCMS/37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Prauserella sediminis | Novel species | CCMS/37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Psychroflexus sediminis | Novel species | MA/28 ℃/2 weeks | Dachaidamu salt lake sediment/Qinghai, China | (Chen et al. 2009a) |
Saccharomonospora paurometabolica | Novel species | ISP5 + 20% NaCl/28 ℃/4 weeks | Soil sample/Xinjiang, China | (Li et al. 2003b) |
Saccharomonospora saliphila | Novel species | ISP5 + 20% NaCl/28 ℃/4 weeks | Muddy soil/Gulbarga, India | (Syed et al. 2008) |
Saccharopolyspora deserti | Novel species | R2A + 5% NaCl/37 ℃/1 week | Desert sand/Saudi Arabia | (Yang et al. 2018a) |
Saccharopolyspora halophila | Novel species | CCMS + 15% NaCl/28 ℃/3 weeks | Hypersaline soil/Xinjiang, China | (Tang et al. 2009a) |
Saccharopolyspora qijiaojingensis | Novel species | CCMS / 28 ℃/3 weeks | Soil sample of Qijiaojing salt lake/Xinjiang, China | (Tang et al. 2009e) |
Salinicoccus albus | Novel species | MA + 30% NaCl/28 ℃/4 weeks | Brine sample of Yipinlang salt mine/Yunnan, China | (Chen et al. 2009b) |
Salinicoccus luteus | Novel species | MA + 15% NaCl/28 ℃/2 weeks | Desert soil, Wadi Sannur, Egypt | (Zhang et al. 2007b) |
Salinicoccus salitudinis | Novel species | MA + 10% NaCl/28 ℃/2 weeks | Saline soil/Qaidam, China | (Chen et al. 2008a) |
Salinimicrobium terrae | Novel species | MA/28 ℃/2 weeks | Saline soil from Chaka salt lake/Qinghai, China | (Chen et al. 2008b) |
Salinisphaera halophila | Novel species | CCMS/28 ℃/3 weeks | Brine sample/Shiyang salt well, Yunnan, China | (Zhang et al. 2012a) |
Saliphagus infecundisoli | Novel genus | GM + 13% NaCl/37 ℃/4 weeks | Saline soil/Loulan, Xinjiang, China | (Yin et al. 2017) |
Sinococcus qinghaiensis | Novel genus | SG + 25% KCl/28 ℃ / 2 weeks | Hypersaline soil/Qinghai, China | (Li et al. 2006b) |
Sphingomonas hunanensis | Novel species | MA + 5% NaCl/28 ℃ / 2 weeks | Forest soil/Hunan, China | (Chen et al. 2011b) |
Streptomonospora alba | Novel species | SCA + 20% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003d) |
Streptomonospora amylolytica | Novel species | SCA + 20% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cai et al. 2009) |
Streptomonospora flavalba | Novel species | SCA + 20% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cai et al. 2009) |
Streptomonospora halophila | Novel species | ISP5 + 10% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cai et al. 2008) |
Streptomonospora salina | Novel genus | ISP5 + 15% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cui et al. 2001) |
Streptomyces fukangensis | Novel species | CCMS (pH10)/30 ℃/4 weeks | Saline-alkaline soil/Fukang, Xinjiang, China | (Zhang et al. 2013) |
Streptomyces tritolerans | Novel species | SCA/28 ℃/2 weeks | Alkaline soil/Gulbarga, India | (Syed et al. 2007) |
Tenuibacillus halotolerans | Novel species | CCMS/37 ℃/1 week | Qijiojing Lake sediment/ Xinjiang, China | (Gao et al. 2013) |
Virgibacillus albus | Novel species | CCMS/28 ℃/2 weeks | Lop Nur salt lake/Xinjiang, China | (Zhang et al. 2012b) |
Virgibacillus litoralis | Novel species | MA + 5% NaCl/30 ℃/2 weeks | Saline soil/Naozhou Island, South China Sea | (Chen et al. 2009e) |
Virgibacillus sediminis | Novel species | MA + 5% NaCl/30 ℃/2 weeks | Keke salt lake/Qinghai, China | (Chen et al. 2009c) |
Yania halotolerans | Novel genus | ISP5 + 15% KCl / 28 ℃/2 weeks | Saline soil/Xinjiang, China | (Li et al. 2004a) |
Yaniella soli | Novel species | NA + 10% NaCl / 30 ℃/2 weeks | Forest soil/Hunan, China | (Chen et al. 2010a) |
Yimella lutea | Novel genus | ISP5 + 5% NaCl / 37 ℃/3 weeks | Contaminated plate | (Tang et al. 2010d) |
Zhihengliuella alba | Novel species | ISP5 + 10% NaCl/37 ℃/3 weeks | Saline sample/Xinjiang, China | (Tang et al. 2009b) |
Zhihengliuella halotolerans | Novel genus | MA + 15% NaCl/28 ℃/2 weeks | Saline soil/Qinghai, China | (Zhang et al. 2007a) |
Zhihengliuella salsuginis | Novel species | MA + 5% NaCl/30 ℃/2 weeks | Xiangli Salt Mine/Hunan, China | (Chen et al. 2010b) |
* ASW Artifcial sea water agar (Eguchi et al.1996), CCMS Cellulose-casein multi salt agar (Tang et al.2008a), GM Gauze medium (Atlas 1993), GTY Glucose-tryptone-yeast medium (Tang et al.2010e), HM Horikoshi medium (Horikoshi 1990), ISP5 International Streptomyces Project medium 5(Shirling and Gottlieb 1966), LB Lutia Berteni medium (Atlas 1993), MA Marine Agar (Difco), NA Nutrient Agar (Atlas 1993), R2A Reasoner's 2A agar (Reasoner and Geldreich 1985), SCA Starch Casein Agar (Kϋster and Williams 1964), SG Sehgal and Gibbon medium (Sehgal and Gibbons 1960), SSDM Sea-salt defned medium (Quesada et al.1987) |
Often, desert and other arid environments are marked by high spatial heterogeneity, particularly involving variation in the nutrient content (Schlesinger et al. 1996). Considering the tremendous abiotic stresses, particularly high temperature, high radiation, low nutrient, and low water, vegetation is sparse in arid environments (Schade and Hobbie 2005). As a result, soil function in arid environments is dependent largely on the function of soil microbial communities (Belnap et al. 2005), as evidenced by high occurrence of the genus Frankia (Connon et al. 2007). However, in most cases, microbial communities in arid environments enter a state of anhydrobiosis (Billi and Potts 2002). Dominant cultured bacteria from deserts belong to the phyla Actinobacteria, Proteobacteria, and Deinococcus-Thermus (Hozzein et al. 2018; Hussain et al. 2016; Yang et al. 2017, 2018a, 2019). They are readily cultivable using conventional nutrient rich media. However few recent studies showed that diluted conventional media achieves the growth of normally slow-growing rare taxa of the phyla Actinobacteria, Bacterioidetes and Proteobacteria (Asem et al. 2018; Dong et al. 2019; Han et al. 2019). Interestingly, these bacteria fail to grow in most commercial rich nutrient media, but exhibit optimum growth in nutrient-poor media, and in the absence of salt. To date, the exact mechanisms for this oligotrophism have not been studied. However, genome analyses predict that some of these bacteria are involved in quorum sensing activities, which are necessary for maintenance and cell-to-cell communications among desert microbial communities (data unpublished).
In a recent publication, Xian et al. (2020) report the utilization of co-occurrence network mapping to understand the possible interactions among different OTUs retrieved from 16S rRNA-based Illumina sequencing of hot spring microbial mat samples (Figs. 3, 4). Utilizing this network-modularity data supported by preliminary experiments of growth-promotion assay between cultured representatives of selected OTUs and metabolome analyses, a spent culture isolation medium was designed to specifically target the isolation of Chloroflexi. The study recovered 57 Chloroflexi isolates in the new ameliorated medium in comparison with 12 isolates in the standard isolation media; two of these isolates have 16S rRNA gene sequence identity values of less than 90% with known culture representatives and present distinct lineages in the phylogenetic dendrogram.
The concept of culturomics involves using multiple isolation media involving a range of culture conditions with different and prolonged incubation. Technically, similar approaches with limited culture conditions have been attempted for understanding the cultivable microbial diversity. Qin et al. (2009) utilized 11 isolation media and three sample-treatment procedures to study the endophytic actinobacterial diversity among medicinal plant samples of a tropical rain forest. Thus, there was recovery of 32 genera of rare actinobacteria from a total of 2, 174 isolates, including 17 isolates representing novel taxa. Li et al. (2012) isolated 228 actinobacteria from tissues of Artemisia annua. L. by application of six isolation media and four sample-treatment methods. Despite high retrieval of cultivable actinobacterial diversity, the recovery rate with limited expansion in the number of media or culture conditions is unsatisfactory against the existing diverse uncultured populations (Qin et al. 2012).
High-throughput isolation methods (culturomics) provide an ideal solution for many environments, and have been successful in cultivating the majority of the uncultured microbiome from human gut (Lagier et al. 2018). The method adopted by Lagier et al. (2016) involved a preliminary isolation with a maximum number of probable culture conditions (212 conditions were used in Lagier et al. 2012) and pre-incubation in blood cultures under both aerobic and anaerobic settings. All colonies were rapidly identified with MALDI-TOF MS (or 16S rRNA gene sequencing), followed by optimization of the culture conditions that increase the probability of cultivation of previously uncultured bacteria, whose diversity was already depicted from the metagenomes.
This strategy was developed by Cross et al. (2019), and was applied successfully for targeted isolation of Saccharibacteria, a phylum among the candidate phyla radiation in the tree of life, from one oral cavity sample. The method provided an advantage over the previously described methods in that slow-growing bacteria could be specifically targeted without any lengthy enrichment step.
A special requirement about this technique is that the genomes (metagenome-assembled genome or single-amplified genomes) of targeted bacteria should contain membrane proteins-encoding genes that are absent in other bacteria. Moreover, these proteins should feature extracellular regions, which may function as surface epitopes. These protein fragments could then be injected into rabbits (or any other suitable animal host) to make antibodies, which are then extracted, purified, and fluorescently labelled. The labelled antibodies are mixed with the microbiome samples to selectively label the targeted organisms. Then, the labelled organisms are sorted from the samples using fluorescence-activated cell sorting, enriched, and cultivated by plating onto several isolation media.
However, this technique still needs to address major problems related to structural modelling of the surface protein of bacteria without cultured representatives. Besides, the technical issue about the selection of growth media/conditions will be a major hindrance if fluorophore-sorted cells lose viability and/or culturability during subsequent enrichment and isolation.
New approaches are frequently being proposed for isolation of previously uncultivated bacteria, and are highly successful for targeted based isolation. However, these approaches are still needed to cover the massive section of the tree of life that is hitherto redundant to cultivation. Besides, all these high-throughput isolation methods are still limited. New improvements have to be brought about to further fill the gap between the cultured and uncultured majority.
This work is supported by the National Natural Science Foundation of China (Nos. 91951205 and 31850410475).
W-JL designed the workflow; NS and W-DX wrote the manuscript. NS and MDA helped in data collection and making figure and tables. MX helped in writing and critical review of the manuscript.
The authors declare there is no confict of interest between them.
This article does not contain any studies with human participants or animals performed by the authors.
Amin A, Ahmed I, Khalid N, Khan IU, Ali A, Dahlawi SM, Li W-J. 2020. Insights on comparative bacterial diversity between different arid zones of Cholistan Desert Pakistan. 3 Biotech, 10:224 doi: 10.1007/s13205-020-02204-6
|
Andreasen K, Nielsen PH. 2000. Growth of Microthrix parvicella in nutrient removal activated sludge plants: studies of in situ physiology. Water Res, 34:1559-1569 doi: 10.1016/S0043-1354(99)00319-X
|
Asem MD, Shi L, Jiao J-Y, Wang D, Han M-X, Dong L, Liu F, Salam N, Li W-J. 2018. Desertimonas flava gen. nov., sp. nov. isolated from a desert soil, and proposal of Ilumatobacteraceae fam. nov. Int J Syst Evol Microbiol, 68:3593-3599 doi: 10.1099/ijsem.0.003038
|
Atlas RM. 1993. Handbook of microbiological media. CRC Press, Boca Raton
|
Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA. 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology, 86:298-307 doi: 10.1890/03-0567
|
Bernard L, Schäfer H, Joux F, Courties C, Muyzer G, Lebaron P. 2000. Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquat Microb Ecol, 23:1-11 doi: 10.3354/ame023001
|
Billi D, Potts M. 2002. Life and death of dried prokaryotes. Res Microbiol, 153:7-12 doi: 10.1016/S0923-2508(01)01279-7
|
Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. 2014. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol, 22:84-91 doi: 10.1016/j.tim.2013.12.004
|
Button DK, Schut F, Quang P, Martin R, Robertson BR. 1993. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol, 59:881-891 doi: 10.1128/AEM.59.3.881-891.1993
|
Cai M, Zhi X-Y, Tang S-K, Zhang Y-Q, Xu L-H, Li W-J. 2008. Streptomonospora halophila sp. nov., a halophilic actinomycete isolated from a hypersaline soil. Int J Syst Evol Microbiol, 58:1556-1560 doi: 10.1099/ijs.0.65513-0
|
Cai M, Tang S-K, Chen Y-G, Li Y, Zhang Y-Q, Li W-J. 2009. Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., two novel halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol, 59:2471-2475 doi: 10.1099/ijs.0.007682-0
|
Chen H-H, Li W-J, Tang S-K, Kroppenstedt RM, Stackebrandt E, Xu L-H, Jiang C-L. 2004. Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int J Syst Evol Microbiol, 54:779-782 doi: 10.1099/ijs.0.02919-0
|
Chen Y-G, Cui X-L, Li W-J, Xu L-H, Wen M-L, Peng Q, Jiang C-L. (2008a). Salinicoccus salitudinis sp. nov., a new moderately halophilic bacterium isolated from a saline soil sample. Extremophiles, 12:197-203 doi: 10.1007/s00792-007-0116-8
|
Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X, Kim CJ, Lim JM, Xu L-H, Jiang C-L. (2008b). Salinimicrobium terrae sp. nov., isolated from saline soil, and emended description of the genus Salinimicrobium. Int J Syst Evol Microbiol, 58:2501-2504 doi: 10.1099/ijs.0.65860-0
|
Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X, Xu L-H, Peng Q, Wen M-L, Jiang C-L. (2008c). Gracilibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from saline soil. Int J Syst Evol Microbiol, 58:2403-2408 doi: 10.1099/ijs.0.65698-0
|
Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X, Xu L-H, Peng Q, Wen M-L, Jiang C-L. (2008d). Gracilibacillus quinghaiensis sp. nov., isolated from salt-lake sediment in the Qaidam Basin, north-west China. Syst Appl Microbiol, 31:183-189 doi: 10.1016/j.syapm.2008.05.001
|
Chen Y-G, Cui X-L, Wang Y-X, Tang S-K, Zhang Y-Q, Li W-J, Liu J-H, Peng Q, Xu L-H. (2009a). Psychroflexus sediminis sp. nov., a mesophilic bacterium isolated from salt lake sediment in China. Int J Syst Evol Microbiol, 59:569-573 doi: 10.1099/ijs.0.003269-0
|
Chen YG, Cui X-L, Wang Y-X, Zhang Y-Q, Li Q-Y, Liu Z-X, Wen M-L, Peng Q, Li W-J. (2009b). Salinicoccus albus sp. nov., a halophilic bacterium from a salt mine. Int J Syst Evol Microbiol, 59:874-879 doi: 10.1099/ijs.0.003251-0
|
Chen Y-G, Cui X-L, Wang Y-X, Zhang Y-Q, Tang S-K, Li W-J, Liu Z-X, Wen M-L, Peng Q. (2009c). Virgibacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol, 59:2058-2063 doi: 10.1099/ijs.0.003624-0
|
Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X, Xu L-H, Wen M-L, Peng Q, Jiang C-L. (2009d). Paraliobacillus quinghaiensis sp. nov., isolated from salt-lake sediment in China. Int J Syst Evol Microbiol, 59:28-33 doi: 10.1099/ijs.0.65735-0
|
Chen Y-G, Liu Z-X, Peng D-J, Zhang Y-Q, Wang Y-X, Tang S-K, Li W-J, Cui XL, Liu Y-Q. (2009e). Virgibacillus litoralis sp. nov., a moderately halophilic bacterium isolated from saline soil. Antonie Van Leeuwenhoek, 96:323-329 doi: 10.1007/s10482-009-9349-0
|
Chen Y-G, Liu Z-X, Zhang Y-Q, Zhang Y-X, Tang S-K, Borrathybay E, Li W-J, Cui X-L. (2009f). Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek, 96:99-107 doi: 10.1007/s10482-009-9340-9
|
Chen Y-G, Tang S-K, Zhang Y-Q, Li Z-Y, Yi LB, Wang Y-X, Li W-J, Cui X-L. (2009g). Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie Van Leeuwenhoek, 96:63-70 doi: 10.1007/s10482-009-9336-5
|
Chen Y-G, Wang Y-X, Zhang Y-Q, Tang S-K, Liu Z-X, Xiao H-D, Xu L-H, Cui X-L, Li W-J. (2009h). Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbiol, 59:2708-2713 doi: 10.1099/ijs.0.009704-0
|
Chen Y-G, Xiao H-D, Tang S-K, Zhang Y-Q, Borrathybay E, Cui X-L, Li W-J, Liu Y-Q. (2009i). Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek, 96:259-266 doi: 10.1007/s10482-009-9341-8
|
Chen YG, Zhang Y-Q, Huang H-Y, Klenk H-P, Tang S-K, Huang K, Chen Q-H, Cui X-L, Li W-J. (2009j). Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol, 59:2888-2893 doi: 10.1099/ijs.0.010173-0
|
Chen YG, Zhang Y-Q, Liu Z-X, Zhuang D-C, Klenk H-P, Tang S-K, Cui X-L, Li W-J. (2009k). Halobacillus salsuginis sp. nov., a moderately halophilic bacterium from a subterranean brine. Int J Syst Evol Microbiol, 59:2505-2509 doi: 10.1099/ijs.0.010801-0
|
Chen Y-G, Zhang Y-Q, Shi J-X, Xiao HD, Tang S-K, Liu Z-X, Huang K, Cui X-L, Li W-J. (2009l). Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol, 59:1625-1629 doi: 10.1099/ijs.0.002451-0
|
Chen Y-G, Zhang Y-Q, Xiao H-D, Liu Z-X, Yi L-B, Shi J-X, Zhi X-Y, Cui X-L, Li W-J. (2009m). Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol, 59:1635-1639 doi: 10.1099/ijs.0.002469-0
|
Chen Y-G, Chen J, Chen Q-H, Tang S-K, Zhang Y-Q, He J-W, Li W-J, Liu Y-Q. (2010a). Yaniella soli sp. nov., a new actinobacterium isolated from non-saline forest soil in China. Antonie Van Leeuwenhoek, 98:395-401 doi: 10.1007/s10482-010-9453-1
|
Chen Y-G, Tang S-K, Zhang Y-Q, Liu Z-X, Chen Q-H, He J-W, Cui X-L, Li W-J. (2010b). Zhihengliuella salsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles, 14:397-402 doi: 10.1007/s00792-010-0317-4
|
Chen Y-G, Zhang Y-Q, Tang S-K, Liu Z-X, Xu L-H, Zhang L-X, Li W-J. (2010c). Nocardiopsis terrae sp. nov., a halophilic actinomycete isolated from saline soil. Antonie Van Leeuwenhoek, 98:31-38 doi: 10.1007/s10482-010-9425-5
|
Chen Y-G, Zhang Y-Q, Yi L-B, Li Z-Y, Wang Y-X, Xiao H-D, Chen Q-H, Cui X-L, Li W-J. (2010d). Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus. Int J Syst Evol Microbiol, 60:560-565 doi: 10.1099/ijs.0.009910-0
|
Chen C, Shi R, Liu B-B, Zhang Y-J, Sun H-Z, Li C-T, Tang S-K, Zhang L-L, Li W-J. (2011a). Halomonas qijiaojingensis sp. nov. and Halomonas flava sp. nov., two moderately halophilic bacteria isolated from a salt lake. Antonie Van Leeuwenhoek, 100:365-373 doi: 10.1007/s10482-011-9591-0
|
Chen Q-H, Chen J-H, Ruan Y, Zhang Y-Q, Tang S-K, Liu Z-X, Li W-J, Chen Y-G. (2011b). Sphingomonas hunanensis sp. nov., isolated from forest soil. Antonie Van Leeuwenhoek, 99:753-760 doi: 10.1007/s10482-011-9549-2
|
Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A. 2007. Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res Biogeosci, 112:G04S17 http://cn.bing.com/academic/profile?id=7d39cf92e46965e28a5ed767f85b3ebc&encoded=0&v=paper_preview&mkt=zh-cn
|
Cordero OX, Datta MS. 2016. Microbial interactions and community assembly at microscales. Curr Opin Microbiol, 31:227-234 doi: 10.1016/j.mib.2016.03.015
|
Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper SJ, Griffen A, Heaton M, Joshi S, Klingeman D, Leys E, Yang Z, Parks JM, Podar M. 2019. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat Biotechnol, 37:1314-1321 doi: 10.1038/s41587-019-0260-6
|
Cui X-L, Mao P-H, Zeng M, Li W-J, Zhang L-P, Xu L-H, Jiang C-L. 2001. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol, 51:357-363 doi: 10.1099/00207713-51-2-357
|
Denef VJ, Mueller RS, Chiang E, Liebig JR, Vanderploeg HA. 2016. Chloroflexi CL500-11 populations that predominate deep-lake hypolimnion bacterioplankton rely on nitrogen-rich dissolved organic matter metabolism and C1 compound oxidation. Appl Environ Microbiol, 82:1423-1432 doi: 10.1128/AEM.03014-15
|
Dong L, Han M-X, Wang D, Liu F, Asem MD, Jiao J-Y, Xiao M, Salam N, Li W-J. 2019. Flaviflagellibacter deserti gen. nov., sp. nov., a novel member of the order Rhizobiales isolated from a desert soil. Antonie Van Leeuwenhoek, 112:947-954 doi: 10.1007/s10482-019-01228-0
|
D'Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K. 2010. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol, 17:254-264 doi: 10.1016/j.chembiol.2010.02.010
|
Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC, Kjelleberg S. 1996. Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol, 62:1287-1294 doi: 10.1128/AEM.62.4.1287-1294.1996
|
Gao X-H, Gao S, Zhou Y, Guan H-L, Zhang Y-J, Jia M, Huang H-W, Yang D-X, Li W-J, Tang S-K. 2013. Tenuibacillus halotolerans sp. nov., a novel bacterium isolated from a soil sample from a salt lake in Xinjiang, China and emended description of the genus Tenuibacillus. Antonie Van Leeuwenhoek, 103:207-215 doi: 10.1007/s10482-012-9802-3
|
Guan T-W, Tang S-K, Wu J-Y, Zhi X-Y, Xu L-H, Zhang L-L, Li W-J. 2009. Haloglycomyces albus gen. nov., sp. nov., a halophilic, filamentous actinomycete of the family Glycomycetaceae. Int J Syst Evol Microbiol, 59:1297-1301 doi: 10.1099/ijs.0.006270-0
|
Guo X-Q, Li R, Zheng LQ, Lin D-Q, Sun J-Q, Li S-P, Li W-J, Jiang J-D. 2010. Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol, 60:1307-1310 doi: 10.1099/ijs.0.013623-0
|
Gupta RS, Chander P, George S. 2013. Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie Van Leeuwenhoek, 103:99-119 doi: 10.1007/s10482-012-9790-3
|
Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D. 2018. The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol, 44:212-229 doi: 10.1080/1040841X.2017.1332003
|
Han MX, Dong L, Asem MD, Jiao JY, Wang D, Liu F, Yang ZW, Xiao M, Salam N, Li WJ. 2019. Botryobacter ruber gen. nov., sp. nov., a novel member of the family Hymenobacteraceae. Int J Syst Evol Microbiol, 69:821-827 doi: 10.1099/ijsem.0.003247
|
He X, McLean JS, Edlund A, Yooseph S, Hall AP, Liu SY, Dorrestein PC, Esquenazi E, Hunter RC, Cheng G, Nelson KE, Lux R, Shi W. 2015. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci USA, 112:244-249 doi: 10.1073/pnas.1419038112
|
Hesse W. 1992. Walther and Angelina Hesse - early contributors to bacteriology. ASM News, 58:425-428 https://www.researchgate.net/publication/242160219_Walther_and_Angelina_Hesse-Early_Contributors_to_Bacteriology_In_an_unassuming_way_they_moved_agar_from_the_kitchen_to_the_lab_revolutionizing_bacteriology
|
Hirsch CF, Christensen DL. 1983. Novel method for selective isolation of actinomycetes. Appl Environ Microbiol, 46:925-929 doi: 10.1128/AEM.46.4.925-929.1983
|
Hofer U. 2018. The majority is uncultured. Nat Rev Microbiol, 16:716-717 http://cn.bing.com/academic/profile?id=97a59c7b76b7b591c62ed89e81ee958a&encoded=0&v=paper_preview&mkt=zh-cn
|
Hollister EB, Engledow AS, Hammett AJM, Provin TL, Wilkinson HH, Gentry TJ. 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J, 4:829-838 doi: 10.1038/ismej.2010.3
|
Horikoshi K. 1990. Enzymes of alkalophiles. In: Fogarty WM, Kelly CT (eds) Microbial enzymes and biotechnology. Springer, Netherlands, Dordrecht, pp 275-294
|
Hozzein WN, Yang Z-W, Alharbi SA, Alsakkaf WAA, Asem MD, Xiao M, Salam N, Li W-J. 2018. Georgenia deserti sp. nov., a halotolerant actinobacterium isolated from a desert sample. Int J Syst Evol Microbiol, 68:1135-1139 doi: 10.1099/ijsem.0.002640
|
Hussain F, Khan IU, Habib N, Xian WD, Hozzein WN, Zhang ZD, Zhi XY, Li WJ. 2016. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol, 66:5106-5111 https://pubmed.ncbi.nlm.nih.gov/27600000/
|
Jiang Y, Li W-J, Xu P, Tang S-K, Xu L-H. 2006. Study on diversity of actinomycetes under salt and alkaline environments. Acta microbiol Sinica, 46:191-195 http://cn.bing.com/academic/profile?id=c5be9b0d7ce5ef5295f90309fd060a1d&encoded=0&v=paper_preview&mkt=zh-cn
|
Jiang C-Y, Dong L, Zhao J-K, Hu X, Shen C, Qiao Y, Zhang X, Wang Y, Ismagilov RF, Liu S-J, Du W. 2016. High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol, 82:2210-2218 doi: 10.1128/AEM.03588-15
|
Kaeberlein T, Lewis K, Epstein SS. 2002. Isolating "Uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 296:1127-1129 doi: 10.1126/science.1070633
|
Kim M, Yu Z. 2012. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets. J Anim Sci Biotechnol, 3:28 doi: 10.1186/2049-1891-3-28
|
Kragelund C, Kong Y, van der Waarde J, Thelen K, Eikelboom D, TandoiV, Thomsen TR, Nielsen PH. 2006. Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology, 152:3003-3012 doi: 10.1099/mic.0.29249-0
|
Kragelund C, Caterina L, Borger A, Thelen K, Eikelboom D, TandoiV, Kong Y, Van Der Waarde J, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH. 2007. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol, 59:671-682 doi: 10.1111/j.1574-6941.2006.00251.x
|
Kushner DJ, Kamekura M. 1988. Physiology of halophilic eubacteria. In: Rodríguez-Valera F (ed) Halophilic Bacteria. Boca Raton, FL, pp 87-103
|
Kϋster E, Williams ST. 1964. Selection of media for isolation of Streptomycetes. Nature, 202:928-929 doi: 10.1038/202928a0
|
Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D. 2012. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect, 18:1185-1193 doi: 10.1111/1469-0691.12023
|
Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir N, Bittar F, Delerce J et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol, 1:16203 doi: 10.1038/nmicrobiol.2016.203
|
Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain JM, Fournier PE, Raoult D. 2018. Culturing the human microbiota and culturomics. Nat Rev Microbiol, 16:540-550 doi: 10.1038/s41579-018-0041-0
|
Lau MCY, Aitchison JC, Pointing SB. 2009. Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles, 13:139-149 doi: 10.1007/s00792-008-0205-3
|
Lear G, Niyogi D, Harding J, Dong Y, Lewis G. 2009. Biofilm bacterial community structure in streams affected by acid mine drainage. Appl Environ Microbiol, 75:3455-3460 doi: 10.1128/AEM.00274-09
|
Lee JC, Jeon CO, Lim JM, Lee SM, Lee JM, Song S-M, Park DJ, Li W-J, Kim CJ. 2005. Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol, 55:2027-2032 doi: 10.1099/ijs.0.63616-0
|
Lee J-C, Li W-J, Xu L-H, Jiang C-L, Kim C-J. 2008. Lentibacillus salis sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol, 58:1838-1843 doi: 10.1099/ijs.0.65545-0
|
Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR. 2006. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol, 72:3685-3695 doi: 10.1128/AEM.72.5.3685-3695.2006
|
Li M-G, Li W-J, Xu P, Cui X-L, Xu L-H, Jiang C-L. (2003a). Nocardiopsis xinjiangensis sp. nov., a halophilic actinomycete isolated from a saline soil sample in China. Int J Syst Evol Microbiol, 53:317-321 doi: 10.1099/ijs.0.02055-0
|
Li W-J, Tang S-K, Stackebrandt E, Kroppenstedt RM, Schumann P, Xu L-H, Jiang C-L. (2003b). Saccharomonospora paurometabolica sp. nov., a moderately halophilic actinomycete isolated from soil in China. J Med Microbiol, 53:1591-1594 https://pubmed.ncbi.nlm.nih.gov/13130053/
|
Li W-J, Xu P, Tang S-K, Xu L-H, Kroppenstedt RM, Stackebrandt E, Jiang C-L. (2003c). Prauserella halophila sp. nov. and Prauserella alba sp. nov., moderately halophilic actinomycetes from saline soil. Int J Syst Evol Microbiol, 53:1545-1549 doi: 10.1099/ijs.0.02611-0
|
Li W-J, Xu P, Zhang L-P, Tang S-K, Cui X-L, Mao P-H, Xu L-H, Schumann P, Stackebrandt E, Jiang C-L. (2003d). Streptomonospora alba sp. nov., a novel halophilic actinomycete, and emended description of the genus Streptomonospora Cui et al. 2001. Int J Syst Evol Microbiol, 53:1421-1425 doi: 10.1099/ijs.0.02543-0
|
Li W-J, Chen H-H, Xu P, Zhang Y-Q, Schumann P, Tang S-K, Xu L-H, Jiang C-L. (2004a). Yania halotolerans gen. nov., sp. nov., a novel member of the suborder Micrococcineae from saline soil in China. Int J Syst Evol Microbiol, 54:525-531 doi: 10.1099/ijs.0.02875-0
|
Li W-J, Chen H-H, Zhang Y-Q, Schumann P, Stackebrandt E, Xu L-H, Jiang C-L. (2004b). Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int J Syst Evol Microbiol, 54:837-841 doi: 10.1099/ijs.0.02935-0
|
Li W-J, Park DJ, Tang S-K, Wang D, Lee J-C, Xu L-H, Kim CJ, Jiang C-L. (2004c). Nocardiopsis salina sp. nov., a novel halophilic actinomycete isolated from saline soil in China. Int J Syst Evol Microbiol, 54:1805-1809 doi: 10.1099/ijs.0.63127-0
|
Li W-J, Chen H-H, Kim CJ, Park DJ, Tang S-K, Lee JC, Xu L-H, Jiang C-L. (2005a). Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. Int J Syst Evol Microbiol, 55:67-70 doi: 10.1099/ijs.0.63239-0
|
Li W-J, Schumann P, Zhang Y-Q, Chen G-Z, Tian X-P, Xu L-H, Stackebrandt E, Jiang CL. (2005b). Marinococcus halotolerans sp. nov., isolated from Qinghai, north-west China. Int J Syst Evol Microbiol, 55:1801-1804 doi: 10.1099/ijs.0.63596-0
|
Li W-J, Zhang Y-Q, Schumann P, Chen H-H, Hozzein WN, Tian X-P, Xu LH, Jiang C-L. (2006a). Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol, 56:733-737 doi: 10.1099/ijs.0.63876-0
|
Li W-J, Zhang Y-Q, Schumann P, Tian X-P, Zhang Y-Q, Xu L-H, Jiang C-L. (2006b). Sinococcus qinghaiensis gen. nov., sp. nov., a novel member of the order Bacillales from a saline soil in China. Int J Syst Evol Microbiol, 56:1189-1192 doi: 10.1099/ijs.0.64111-0
|
Li W-J, Zhang Y-Q, Schumann P, Liu H-Y, Yu L-Y, Zhang Y-Q, Stackebrandt E, Xu L-H, Jiang C-L. 2008. Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol, 58:1359-1363 doi: 10.1099/ijs.0.64226-0
|
Li Y, Tang S-K, Chen Y-G, Wu J-Y, Zhi X-Y, Zhang Y-Q, Li W-J. 2009. Prauserella salsuginis sp. nov., Prauserella flava sp. nov., Prauserella aidingensis sp. nov. and Prauserella sediminis sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol, 59:2923-2928 doi: 10.1099/ijs.0.011122-0
|
Li J, Zhao G-Z, Huang H-Y, Qin S, Zhu W-Y, Zhao L-X, Xu L-H, Zhang S, Li W-J, Strobel G. 2012. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie Van Leeuwenhoek, 101:515-527 doi: 10.1007/s10482-011-9661-3
|
Li L, Ma J-B, Abdalla Mohamad O, Li SH, Osman G, Li Y-Q, Guo J-W, Hozzein WN, Li W-J. 2015. Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis F. Int J Syst Evol Microbiol, 65:2671-2677 doi: 10.1099/ijs.0.000322
|
Li L-Y, Yang Z-W, Asem MD, Salam N, Xiao M, Alkhalifah DHM, Hozzein WN, Nie G-X, Li W-J. 2019. Georgenia alba sp. nov., a novel halotolerant actinobacterium isolated from a desert sand sample. Antonie Van Leeuwenhoek, 112:203-209 doi: 10.1007/s10482-018-1145-2
|
Lindahl V. 1996. Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival. J Microbiol Methods, 25:279-286 doi: 10.1016/0167-7012(95)00102-6
|
Liu B-B, Tang S-K, Cui H-L, Zhang Y-G, Li L, Zhang Y-M, Zhang L-L, Li W-J. 2013. Halopelagius fulvigenes sp. nov., a halophilic archaeon isolated from a lake. Int J Syst Evol Microbiol, 63:2192-2196 doi: 10.1099/ijs.0.045773-0
|
Liu B-B, Zhao W-Y, Chu X, Hozzein WN, Prabhu DM, Wadaan MA, Tang S-K, Zhang L-L, Li W-J. 2014. Haladaptatus pallidirubidus sp. nov., a halophilic archaeon isolated from saline soil samples in Yunnan and Xinjiang. China Antonie Van Leeuwenhoek, 106:901-910 doi: 10.1007/s10482-014-0259-4
|
Liu W, Zhang G-J, Xian W-D, Yang J, Yang L-L, Xiao M, Jiang H-C, Li W-J. 2016. Halomonas xiaochaidanensis sp. nov., isolated from a salt lake sediment. Arch Microbiol, 198:761-766 doi: 10.1007/s00203-016-1235-3
|
Liu B-B, Narsing Rao MP, Yin X-Q, Li X, Salam N, Zhang Y, Alkhalifah DHM, Hozzein WN, Li WJ. 2019. Description of Halegenticoccus soli gen. nov., sp. nov., a halophilic archaeon isolated from a soil sample of Ebi lake. Extremophiles, 23:521-528 doi: 10.1007/s00792-019-01104-9
|
Lok C. 2015. Mining the microbial dark matter. Nature, 522:270-273 doi: 10.1038/522270a
|
Long M-R, Zhang DF, Yang X-Y, Zhang X-M, Zhang Y-G, Zhang Y-M, Zhu H, Li W-J. 2013. Halomonas nanhaiensis sp. nov., a halophilic bacterium isolated from a sediment sample from the South China Sea. Antonie Van Leeuwenhoek, 103:997-1005 doi: 10.1007/s10482-013-9879-3
|
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature, 489:220-230 doi: 10.1038/nature11550
|
Machin EV, Asem MD, Salam N, Iriarte A, Langleib M, Li W-J, Menes RJ. 2019. Nesterenkonia natronophila sp. nov., an alkaliphilic actinobacterium isolated from a soda lake, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol, 69:1960-1966 doi: 10.1099/ijsem.0.003409
|
Madinger HL, Wilson KP, Goldstein JA, Bernot MJ. 2016. Biogeochemistry and nutrient limitation of microbial biofilms in Devils Hole, Nevada. Western North Am Natural, 76:53-71 doi: 10.3398/064.076.0107
|
Martin SE, Flowers RS, Ordal ZJ. 1976. Catalase: its effect on microbial enumeration. Appl Environ Microbiol, 32:731-734 doi: 10.1128/AEM.32.5.731-734.1976
|
Mee MT, Collins JJ, Church GM, Wang H-H. 2014. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA, 111:E2149-E2156 http://cn.bing.com/academic/profile?id=09892e600a74730fd2843217c5d60861&encoded=0&v=paper_preview&mkt=zh-cn
|
Mehrshad M, Salcher MM, Okazaki Y, Nakano S-i, Šimek K, Andrei A-S, Ghai R. 2018. Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome, 6:176 doi: 10.1186/s40168-018-0563-8
|
Mincer TJ, Jensen PR, Kauffman CA, Fenical W. 2002. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol, 68:5005-5011 doi: 10.1128/AEM.68.10.5005-5011.2002
|
Morris JJ, Lenski RE, Zinser ER. 2012. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio, 3:e00036-e00112 http://cn.bing.com/academic/profile?id=af637abb9d61e5c6a094d490a0b1b101&encoded=0&v=paper_preview&mkt=zh-cn
|
Narihiro T, Terada T, Kikuchi K, Iguchi A, Ikeda M, Yamauchi T, Shiraishi K, Kamagata Y, Nakamura K, Sekiguchi Y. 2009. Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ, 24:88-96 doi: 10.1264/jsme2.ME08561
|
Nikolaev YA, Plakunov VK. 2007. Biofilm—"City of microbes" or an analogue of multicellular organisms? Microbiology, 76:125-138 doi: 10.1134/S0026261707020014
|
Nimaichand S, Zhu W-Y, Yang LL, Ming H, Nie G-X, Tang S-K, Ningthoujam DS, Li W-J. 2012. Streptomyces manipurensis sp. nov., a novel actinomycete isolated from a limestone deposit site in Manipur. India Antonie Van Leeuwenhoek, 102:133-139 doi: 10.1007/s10482-012-9720-4
|
Nimaichand S, Zhang Y-G, Cheng J, Li L, Zhang D-F, Zhou E-M, Dong L, Ningthoujam DS, Li W-J. 2013. Micromonospora kangleipakensis sp. nov., isolated from a sample of limestone quarry. Int J Syst Evol Microbiol, 63:4546-4551 doi: 10.1099/ijs.0.052746-0
|
Okabe S, Kindaichi T, Ito T. 2004. MAR-FISH: An ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ, 19:83-98 doi: 10.1264/jsme2.19.83
|
Okabe S, Satoh H, Kindaichi T. 2011. A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms. Methods Enzymol, 496:163-184 doi: 10.1016/B978-0-12-386489-5.00007-5
|
Overmann J, Abt B, Sikorski J. 2017. Present and future of culturing bacteria. Ann Rev Microbiol, 71:711-730 doi: 10.1146/annurev-micro-090816-093449
|
Pace NR. 1997. A molecular view of microbial diversity and the biosphere. Science, 276:734-740 doi: 10.1126/science.276.5313.734
|
Peng Q-Z, Peng Q-J, Zhang Y-Q, Liu Z-X, Wang Y-X, Li W-J, Cui X-L, Chen Y-G. 2009. Halobacillus hunanensis sp. nov., a moderately halophilic bacterium isolated from a subterranean brine. Antonie Van Leeuwenhoek, 96:497-504 doi: 10.1007/s10482-009-9365-0
|
Pianetti A, Battistelli M, Citterio B, Parlani C, Falcieri E, Bruscolini F. 2009. Morphological changes of Aeromonas hydrophila in response to osmotic stress. Micron, 40:426-433 doi: 10.1016/j.micron.2009.01.006
|
Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y, Jiang C-L, Xu L-H, Li W-J. 2009. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol, 75:6176-6186 doi: 10.1128/AEM.01034-09
|
Qin S, Chen H-H, Zhao G-Z, Li J, Zhu W-Y, Xu L-H, Jiang J-H, Li W-J. 2012. Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep, 4:522-531 doi: 10.1111/j.1758-2229.2012.00357.x
|
Quesada E, Bejar V, Valderrama MJ, Ramos-Cormenzana A. 1987. Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr Microbiol, 16:21-25 doi: 10.1007/BF01568164
|
Ratzke C, Gore J. 2018. Modifying and reacting to the environmental pH can drive bacterial interactions. PLOS Biol, 16:e2004248 doi: 10.1371/journal.pbio.2004248
|
Reasoner DJ, Geldreich EE. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol, 49:1-7 doi: 10.1128/AEM.49.1.1-7.1985
|
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499:431-437 doi: 10.1038/nature12352
|
Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T. 2014. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protocols, 9:1038-1048 doi: 10.1038/nprot.2014.067
|
Schade JD, Hobbie SE. 2005. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry, 73:541-553 doi: 10.1007/s10533-004-1718-1
|
Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77:364-374 http://cn.bing.com/academic/profile?id=5e445264bcab612911554c3fba658479&encoded=0&v=paper_preview&mkt=zh-cn
|
Sehgal SN, Gibbons NE. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol, 6:165-169 doi: 10.1139/m60-018
|
Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int J Syst Bacteriol, 16:313-340 doi: 10.1099/00207713-16-3-313
|
Speirs LBM, Rice DTF, Petrovski S, Seviour RJ. 2019. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front Microbiol, 10:02015 doi: 10.3389/fmicb.2019.02015
|
Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Ann Rev Microbiol, 56:187-209 doi: 10.1146/annurev.micro.56.012302.160705
|
Sutcliffe IC. 2010. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol, 18:464-470 doi: 10.1016/j.tim.2010.06.005
|
Sutcliffe IC. 2011. Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol, 13:279-282 doi: 10.1111/j.1462-2920.2010.02339.x
|
Syed DG, Agasar D, Kim CJ, Li W-J, Lee JC, Park DJ, Xu L-H, Tian X-P, Jiang C-L. 2007. Streptomyces tritolerans sp. nov., a novel actinomycete isolated from soil in Karnataka. India Antonie Van Leeuwenhoek, 92:391-397 doi: 10.1007/s10482-007-9166-2
|
Syed DG, Tang S-K, Cai M, Zhi X-Y, Agasar D, Lee JC, Kim CJ, Jiang C-L, Xu L-H, Li W-J. 2008. Saccharomonospora saliphila sp. nov., a halophilic actinomycete from an Indian soil. Int J Syst Evol Microbiol, 58:570-573 doi: 10.1099/ijs.0.65449-0
|
Tang S-K, Tian X-P, Zhi X-Y, Cai M, Wu J-Y, Yang L-L, Xu L-H, Li W-J. (2008a). Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol, 58:2075-2080 doi: 10.1099/ijs.0.65531-0
|
Tang S-K, Wang Y, Cai M, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J. (2008b). Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol, 58:2036-2040 doi: 10.1099/ijs.0.65519-0
|
Tang S-K, Wang Y, Schumann P, Stackebrandt E, Lou K, Jiang C-L, Xu L-H, Li W-J. (2008c). Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol, 58:574-577 doi: 10.1099/ijs.0.65183-0
|
Tang S-K, Wang Y, Cai M, Zhi X-Y, Lou K, Xu L-H, Jiang C-L, Li W-J. (2009a). Saccharopolyspora halophila sp. nov., a novel halophilic actinomycete isolated from a saline lake in China. Int J Syst Evol Microbiol, 59:555-558 doi: 10.1099/ijs.0.65705-0
|
Tang S-K, Wang Y, Chen Y, Lou K, Cao L-L, Xu L-H, Li W-J. (2009b). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol, 59:2025-2031 doi: 10.1099/ijs.0.007344-0
|
Tang S-K, Wang Y, Lou K, Mao P-H, Jin X, Jiang C-L, Xu LH, Li W-J. (2009c). Gracilibacillus saliphilus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol, 59:1620-1624 doi: 10.1099/ijs.0.006569-0
|
Tang S-K, Wang Y, Lou K, Mao P-H, Xu L-H, Jiang C-L, Kim CJ, Li W-J. (2009d). Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol, 59:1316-1320 doi: 10.1099/ijs.0.006627-0
|
Tang S-K, Wang Y, Wu J-Y, Cao L-L, Lou K, Xu L-H, Jiang C-L, Li W-J. (2009e). Saccharopolyspora qijiaojingensis sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol, 59:2166-2170 doi: 10.1099/ijs.0.009860-0
|
Tang S-K, Wang Y, Guan T-W, Lee J-C, Kim C-J, Li W-J. (2010a). Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol, 60:1073-1078 doi: 10.1099/ijs.0.012427-0
|
Tang S-K, Wang Y, Lee J-C, Lou K, Park D-J, Kim C-J, Li W-J. (2010b). Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int J Syst Evol Microbiol, 60:1317-1421 doi: 10.1099/ijs.0.014993-0
|
Tang S-K, Wang Y, Zhang H, Lee J-C, Lou K, Kim C-J, Li W-J. (2010c). Haloechinothrix alba gen. nov., sp. nov., a halophilic, filamentous actinomycete of the suborder Pseudonocardineae. Int J Syst Evol Microbiol, 60:2154-2158 doi: 10.1099/ijs.0.018531-0
|
Tang S-K, Wu J-Y, Wang Y, Schumann P, Li W-J. (2010d). Yimella lutea gen. nov., sp. nov., a novel actinobacterium of the family Dermacoccaceae. Int J Syst Evol Microbiol, 60:659-663 doi: 10.1099/ijs.0.013920-0
|
Tang S-K, Zhi X-Y, Wang Y, Wu J-Y, Lee JC, Kim CJ, Lou K, Xu L-H, Li W-J. (2010e). Haloactinobacterium album gen. nov., sp. nov., a halophilic actinobacterium, and proposal of Ruaniaceae fam. nov. Int J Syst Evol Microbiol, 60:2113-2119 doi: 10.1099/ijs.0.018440-0
|
Tang S-K, Wang Y, Klenk HP, Shi R, Lou K, Zhang Y-J, Chen C, Ruan JS, Li W-J. (2011a). Actinopolyspora alba sp. nov. and Actinopolyspora erythraea sp. nov., isolated from a salt field, and reclassification of Actinopolyspora iraqiensis Ruan et al. 1994 as a heterotypic synonym of Saccharomonospora halophila. Int J Syst Evol Microbiol, 61:1693-1698 doi: 10.1099/ijs.0.022319-0
|
Tang S-K, Zhi X-Y, Wang Y, Shi R, Lou K, Xu L-H, Li W-J. (2011b). Haloactinopolyspora alba gen. nov., sp. nov., a halophilic filamentous actinomycete isolated from a salt lake, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord. nov. Int J Syst Evol Microbiol, 61:194-200 doi: 10.1099/ijs.0.021725-0
|
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 336:608-611 doi: 10.1126/science.1218344
|
Tian X-P, Dastager SG, Lee JC, Tang S-K, Zhang Y-Q, Park DJ, Kim CJ, Li W-J. 2007. Alkalibacillus halophilus sp. nov., a new halophilic species isolated from hypersaline soil in Xin-Jiang province. China Syst Appl Microbiol, 30:268-272 doi: 10.1016/j.syapm.2006.08.003
|
Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. 2008. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature, 452:741-744 doi: 10.1038/nature06776
|
Vartoukian SR, Palmer RM, Wade WG. 2010. Strategies for culture of 'unculturable' bacteria. FEMS Microbiol Lett, 309:1-7 http://cn.bing.com/academic/profile?id=518b531f9e4be1cfb59fb18689b6b552&encoded=0&v=paper_preview&mkt=zh-cn
|
Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC. 2008. Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin Heidelberg, pp 87-115
|
Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT. 2015. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol, 25:80-87 doi: 10.1016/j.mib.2015.05.002
|
Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. 2002. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 81:665-680 doi: 10.1023/A:1020586312170
|
Wang Y, Tang S-K, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J. 2008. Halomonas lutea sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol, 58:2065-2069 doi: 10.1099/ijs.0.65436-0
|
Wang Y, Cao L-L, Tang S-K, Lou K, Mao P-H, Jin X, Jiang C-L, Xu LH, Li W-J. (2009a). Marinococcus luteus sp. nov., a halotolerant bacterium isolated from a salt lake, and emended description of the genus Marinococcus. Int J Syst Evol Microbiol, 59:2875-2879 doi: 10.1099/ijs.0.009670-0
|
Wang Y, Tang S-K, Lou K, Lee JC, Jeon CO, Xu L-H, Kim CJ, Li W-J. (2009b). Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol, 59:3088-3094 doi: 10.1099/ijs.0.010264-0
|
Wang Y, Tang S-K, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J. (2009c). Paracoccus saliphilus sp. nov., a halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol, 59:1924-1928 doi: 10.1099/ijs.0.005918-0
|
Wang Y-N, Chi C-Q, Cai M, Lou Z-Y, Tang Y-Q, Zhi X-Y, Li W-J, Wu X-L, Du X. 2010. Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol, 60:638-643 doi: 10.1099/ijs.0.010546-0
|
Wang Y, Tang S-K, Li Z, Lou K, Mao P-H, Jin X, Klenk H-P, Zhang L-X, Li W-J. 2011. Myceligenerans halotolerans sp. nov., an actinomycete isolated from a salt lake, and emended description of the genus Myceligenerans. Int J Syst Evol Microbiol, 61:974-978 doi: 10.1099/ijs.0.024091-0
|
Wang H-F, Zhang Y-G, Chen J-Y, Hozzein WN, Li L, Wadaan MAM, Zhang Y-M, Li W-J. 2014. Nesterenkonia rhizosphaerae sp. nov., an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert. Int J Syst Evol Microbiol, 64:4021-4026 doi: 10.1099/ijs.0.066894-0
|
Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. 2018. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Front Microbiol, 9:00260 doi: 10.3389/fmicb.2018.00260
|
Williams ST, Davies FL. 1965. Use of antibiotics for selective isolation and enumeration of Actinomycetes in soil. Microbiology, 38:251-261 http://cn.bing.com/academic/profile?id=38a78cce4c263000d05d6bf487fe2e5e&encoded=0&v=paper_preview&mkt=zh-cn
|
Xian W-D, Salam N, Li M-M, Zhou E-M, Yin Y-R, Liu Z-T, Ming Y-Z, Zhang X-T, Wu G, Liu L, Xiao M, Jiang H-C, Li W-J. 2020. Network-directed efficient isolation of previously uncultivated Chloroflexi and related bacteria in hot spring microbial mats. NPJ Biofilms Microbiomes, 6:20 doi: 10.1038/s41522-020-0131-4
|
Xue M, Wen C-Q, Liu L, Fang B-Z, Salam N, Huang X-M, Liu Y-F, Xiao M, Li W-J. 2018. Halomonas litopenaei sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from a shrimp hatchery. Int J Syst Evol Microbiol, 68:3914-3921 doi: 10.1099/ijsem.0.003090
|
Yang Z-W, Salam N, Hua Z-S, Liu B-B, Han M-X, Fang B-Z, Wang D, Xiao M, Hozzein WN, Li W-J. 2017. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol, 67:4862-4867 doi: 10.1099/ijsem.0.002397
|
Yang Z-W, Salam N, Asem MD, Fang B-Z, Lan L, Xiao M, Wadaan MAM, Hozzein WN, Li W-J. (2018a). Saccharopolyspora deserti sp. nov., a novel halotolerant actinobacterium isolated from a desert. Int J Syst Evol Microbiol, 68:860-864 doi: 10.1099/ijsem.0.002598
|
Yang Z-W, Salam N, Mohany M, Chinnathambi A, Alharbi SA, Xiao M, Hozzein WN, Li W-J. (2018b). Microbacterium album sp. nov. and Microbacterium deserti sp. nov., two halotolerant actinobacteria isolated from desert soil. Int J Syst Evol Microbiol, 68:217-222 doi: 10.1099/ijsem.0.002485
|
Yang Z-W, Asem MD, Li X, Li L-Y, Salam N, Alkhalifah DHM, Hozzein WN, Nie G-X, Li W-J. 2019. Blastococcus deserti sp. nov., isolated from a desert sample. Arch Microbiol, 201:193-198 doi: 10.1007/s00203-018-1604-1
|
Yin X-Q, Liu B-B, Chu X, Salam N, Li X, Yang Z-W, Zhang Y, Xiao M, Li W-J. 2017. Saliphagus infecundisoli gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline soil. Int J Syst Evol Microbiol, 67:4154-4160 doi: 10.1099/ijsem.0.002270
|
Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. 2015. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA, 112:6449-6454 doi: 10.1073/pnas.1421834112
|
Zengler K, Palsson BO. 2012. A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol, 10:366-372 doi: 10.1038/nrmicro2763
|
Zhang Y-Q, Schumann P, Li W-J, Chen G-Z, Tian X-P, Stackebrandt E, Xu L-H, Jiang C-L. 2005. Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai province, north-west China. Int J Syst Evol Microbiol, 55:1867-1870 doi: 10.1099/ijs.0.63641-0
|
Zhang Y-Q, Schumann P, Yu L-Y, Liu H-Y, Zhang Y-Q, Xu L-H, Stackebrandt E, Jiang C-L, Li W-J. (2007a). Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae. Int J Syst Evol Microbiol, 57:1018-1023 doi: 10.1099/ijs.0.64528-0
|
Zhang Y-Q, Yu L-Y, Liu H-Y, Zhang Y-Q, Xu L-H, Li W-J. (2007b). Salinicoccus luteus sp. nov., isolated from a desert soil. Int J Syst Evol Microbiol, 57:1901-1905 doi: 10.1099/ijs.0.64967-0
|
Zhang Y-J, Tang S-K, Shi R, Klenk H-P, Chen C, Yang L-L, Zhou Y, Li W-J. (2012a). Salinisphaera halophila sp. nov., a moderately halophilic bacterium isolated from brine of a salt well. Int J Syst Evol Microbiol, 62:2174-2179 doi: 10.1099/ijs.0.035584-0
|
Zhang Y-J, Zhou Y, Ja M, Shi R, Chun-Yu WX, Yang L-L, Tang S-K, Li W-J. (2012b). Virgibacillus albus sp. nov., a novel moderately halophilic bacterium isolated from Lop Nur salt lake in Xinjiang province. China Antonie Van Leeuwenhoek, 102:553-560 doi: 10.1007/s10482-012-9750-y
|
Zhang Y-G, Wang H-F, Liu Q, Hozzein W-N, Wadaan M-A, Cheng J, Chen Y-J, Zhang Y-M, Li W-J. 2013. Streptomyces fukangensis sp. nov., a novel alkaliphilic actinomycete isolated from a saline-alkaline soil. Antonie Van Leeuwenhoek, 104:1227-1233 doi: 10.1007/s10482-013-0045-8
|
Zhang Y-G, Liu Q, Wang H-F, Zhang D-F, Zhang Y-M, Park D-J, Kim C-J, Li W-J. 2014. Haloactinopolyspora alkaliphila sp. nov., and emended description of the genus Haloactinopolyspora. Int J Syst Evol Microbiol, 64:1945-1951 doi: 10.1099/ijs.0.062646-0
|
Zhang Y-G, Chen J-Y, Wang H-F, Xiao M, Yang L-L, Guo J-W, Zhou E-M, Zhang Y-M, Li W-J. (2016a). Egicoccus halophilus gen. nov., sp. nov., a halophilic, alkalitolerant actinobacterium and proposal of Egicoccaceae fam. nov. and Egicoccales ord. nov. Int J Syst Evol Microbiol, 66:530-535 doi: 10.1099/ijsem.0.000749
|
Zhang Y-G, Liu Q, Wang H-F, Park D-J, Guo J-W, Kim C-J, Zhang Y-M, Li W-J. (2016b). Nocardiopsis ansamitocini sp. nov., a new producer of ansamitocin P-3 of the genus Nocardiopsis. Int J Syst Evol Microbiol, 66:230-235 doi: 10.1099/ijsem.0.000703
|
Zhang Y-G, Lu X-H, Ding Y-B, Wang S-J, Zhou X-K, Wang H-F, Guo J-W, Liu Y-H, Duan Y-Q, Li W-J. (2016c). Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol, 66:4071-4076 doi: 10.1099/ijsem.0.001312
|
Zhang Y-G, Wang H-F, Yang L-L, Guo J-W, Xiao M, Huang M-J, Hozzein WN, Li W-J. (2016d). Ornithinicoccus halotolerans sp. nov., and emended description of the genus Ornithinicoccus. Int J Syst Evol Microbiol, 66:1894-1899 doi: 10.1099/ijsem.0.000964
|
Zhang Y-G, Wang H-F, Yang L-L, Zhou X-K, Zhi X-Y, Duan Y-Q, Xiao M, Zhang Y-M, Li W-J. (2016e). Egibacter rhizosphaerae gen. nov., sp. nov., an obligately halophilic, facultatively alkaliphilic actinobacterium and proposal of Egibaceraceae fam. nov. and Egibacterales ord. nov. Int J Syst Evol Microbiol, 66:283-289 doi: 10.1099/ijsem.0.000713
|
Zhang W, Ding W, Li Y-X, Tam C, Bougouffa S, Wang R, Pei B, Chiang H, Leung P, Lu Y, Sun J, Fu H, Bajic VB, Liu H, Webster NS, Qian P-Y. 2019. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat Commun, 10:517 doi: 10.1038/s41467-019-08463-z
|
Zhao B, Wang H, Mao X, Li R, Zhang Y-J, Tang S, Li W-J. 2012. Halomonas xianhensis sp. nov., a moderately halophilic bacterium isolated from a saline soil contaminated with crude oil. Int J Syst Evol Microbiol, 62:173-178 doi: 10.1099/ijs.0.025627-0
|
Zhou E-M, Xian W-D, Jiao J-Y, Liu L, Li M-M, Ding Y-P, Yin Y-R, Zhao J, Nimaichand S, Xiao M, Li W-J. 2018. Physiological and genomic properties of Thermus tenuipuniceus sp. nov., a novel slight reddish color member isolated from a terrestrial geothermal spring. Syst Appl Microbiol, 41:611-618 doi: 10.1016/j.syapm.2018.08.011
|
Name of novel taxa | Highest taxonomic rank proposed with the novel taxa | Isolation condition* | Source/sampling site | References |
Actinopolyspora alba | Novel species | CCMS + 15% NaCl/37 ℃/ 3 weeks | Baicheng salt field/Xinjiang, China | (Tang et al. 2011a) |
Actinopolyspora erythraea | Novel species | CCMS + 15% NaCl/37 ℃/3 weeks | Baicheng salt field/Xinjiang, China | (Tang et al. 2011a) |
Aidingimonas halophila | Novel genus | CCMS | Aiding lake sediment/Xinjiang, China | (Wang et al. 2009b) |
Alkalibacillus halophilus | Novel species | SG + 25% NaCl/37 ℃/2–3 weeks | Hypersaline soil/Xinjiang, China | (Tian et al. 2007) |
Alteromonas halophila | Novel species | MA + 20% NaCl/28 ℃/1–4 weeks | Sea anemone/Naozhou Island, China | (Chen et al. 2009i) |
Amycolatopsis halophila | Novel species | CCMS / 37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010a) |
Amycolicicoccus subflavus | Novel genus | ASW + 2.4% NaCl/30 ℃/2 days | Oil-polluted saline soil/Shengli Oilfield, China | (Wang et al. 2010) |
Arthrobacter halodurans | Novel species | MA + 20% NaCl/28 ℃/2 weeks | Sea water/Naozhou Island, South China Sea | (Chen et al. 2009g) |
Brevibacterium album | Novel species | ISP5 + 15% KCl / 37 ℃/2 weeks | Saline soil/ Xinjiang, China | (Tang et al. 2008c) |
Corynebacterium halotolerans | Novel species | ISP5 + 15% KCl + trace elements /28 ℃ / 2–3 days | Saline soil/Xinjiang, China | (Chen et al. 2004) |
Egibacter rhizosphaerae | Novel order | R2A + 10% NaCl (pH 10)/ 30 ℃ / 4 weeks | Rhizosphere of Tamarix hispida/Xinjiang, China | (Zhang et al. 2016e) |
Egicoccus halophilus | Novel order | MA (pH 10)/30 ℃/4 weeks | Saline-alkali soil/Shihezi, Xinjiang, China | (Zhang et al. 2016a) |
Georgenia alba | Novel species | R2A/28 ℃/5 days | Desert sand/Saudi Arabia | (Li et al. 2019) |
Georgenia deserti | Novel species | R2A/28 ℃/5 days | Desert sand/Saudi Arabia | (Hozzein et al. 2018) |
Georgenia halophila | Novel species | GTY + 10% NaCl/37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010b) |
Gracilibacillus halophilus | Novel species | MA + 20% NaCl/30 ℃/4 weeks | Saline soil/Qinghai, China | (Chen et al. 2008c) |
Gracilibacillus quinghaiensis | Novel species | MA/28 ℃ | Xiaochaidamu salt lake sediment/Qinghai, China | (Chen et al. 2008d) |
Gracilibacillus saliphilus | Novel species | ISP5 + 10% NaCl | Ebinur Lake sample/Xinjiang, China | (Tang et al. 2009c) |
Haladaptatus pallidirubidus | Novel species | CCMS/30 ℃/4 weeks | Saline soil from Lop Nur/Xinjiang, China | (Liu et al. 2014) |
Halegenticoccus soli | Novel genus | GM + 20% NaCl / 37 ℃ / 4 weeks | Ebi Lake soil/ Xinjiang, China | (Liu et al. 2019) |
Haloactinopolyspora alkaliphila | Novel species | CCMS / 30 ℃/3 weeks | Saline-alkali soil/Xinjiang, China | (Zhang et al. 2014) |
Haloactinobacterium album | Novel genus | GTY + 10% NaCl / 37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010e) |
Haloactinopolyspora alba | Novel genus | CCMS/37 ℃/3 weeks | Qijiaojing lake sample/Xinjiang, China | (Tang et al. 2011b) |
Haloactinospora alba | Novel genus | CCMS + 10% NaCl/37 ℃/3 weeks | Salt lake/Xinjiang, China | (Tang et al. 2008a) |
Halobacillus hunanensis | Novel species | MA + 30% NaCl/28 ℃/1–4 weeks | Brine sample from Xiangli Salt Mine/Hunan, China | (Peng et al. 2009) |
Halobacillus naozhouensis | Novel species | MA + 5% NaCl / 28 ℃/2 weeks | Sea anemone/Naozhou, China | (Chen et al. 2009f) |
Halobacillus salsuginis | Novel species | MA + 5% NaCl / 30 ℃/2 weeks | Brine sample from Xiangli Salt Mine/Hunan, China | (Chen et al. 2009k) |
Haloechinothrix alba | Novel genus | CCMS + 10% NaCl/37 ℃/3 weeks | Qijiaojing Lake soil/Xinjiang, China | (Tang et al. 2010c) |
Haloglycomyces albus | Novel genus | CCMS + 10% NaCl/ 37 ℃/2–4 weeks | Hypersaline soil/Xinjiang, China | (Guan et al. 2009) |
Halomonas flava | Novel species | GTY + 10% NaCl / 37 ℃ / 1 week | Qijiaojing Lake sediment/Xinjiang, China | (Chen et al. 2011a) |
Halomonas litopenaei | Novel species | MA / 28 ℃/5 days | Larviculture water/ Donghai Island, Guangdong, China | (Xue et al. 2018) |
Halomonas lutea | Novel species | ISP5 + 10% NaCl/37 ℃ | Ebinur Lake sample/Xinjiang, China | (Wang et al. 2008) |
Halomonas nanhaiensis | Novel species | ISP5 + 3.5% sea salt /8 ℃/30 days | Sediment sample/South China Sea | (Long et al. 2013) |
Halomonas qijiaojingensis | Novel species | GTY + 10% NaCl / 37 ℃/1 week | Qijiaojing Lake sediment/Xinjiang, China | (Chen et al. 2011a) |
Halomonas taeanensis | Novel species | MA + 8% NaCl / 35 ℃ / 2 days | Solar saltern sample/Taean, Korea | (Lee et al. 2005) |
Halomonas xianhensis | Novel species | SSDM | Saline soil/ Xianhe, Shangdong, China | (Zhao et al. 2012) |
Halomonas xiaochaidanensis | Novel species | R2A + ASW/15 ℃/3 days (after enrichment for 2 days in the same liquid media) | Xiaochaidan Lake sediment/Tibet, China | (Liu et al. 2016) |
Halomonas zhanjiangensis | Novel species | MA / 28 ℃ / 1 week | Sea urchin/Naozhou Island, China | (Chen et al. 2009j) |
Halopelagius fulvigenes | Novel species | GM + 10% NaCl/37 ℃/4 weeks | Qijiaojing lake soil/Xinjiang, China | (Liu et al. 2013) |
Isoptericola halotolerans | Novel species | HM + 20% NaCl/28 ℃/1 week | Saline soil/Qinghai, China | (Zhang et al. 2005) |
Jeotgalicoccus huakuii | Novel species | LB / 30 ℃ | Seaside soil/Shandong, China | (Guo et al. 2010) |
Jeotgalicoccus marinus | Novel species | MA + 20% NaCl/28 ℃/4 weeks | Sea urchin/Leizhou Bay, China | (Chen et al. 2009l) |
Kocuria aeqyptia | Novel species | HM / 28 ℃/1 week | Saline, alkaline desert soil/Egypt | (Li et al. 2006a) |
Kocuria halotolerans | Novel species | ISP5 + 10% NaCl/37 ℃/3 weeks | Saline soil from Ganjiahu Suosuo Forest/Xinjiang, China | (Tang et al. 2009d) |
Lentibacillus salis | Novel species | MA + 10% NaCl/35 ℃/3 days | Ayakekum salt lake soil/Xinjiang, China | (Lee et al. 2008) |
Lipingzhangella halophila | Novel genus | MA + 2% NaCl (pH 10)/30 ℃/4 weeks | Gurbangtϋnggϋt desert soil/Xinjiang, China | (Zhang et al. 2016c) |
Marinococcus halotolerans | Novel species | SG + 25% MgCl2/28 ℃/2 weeks | Hypersaline soil/Qinghai, China | (Li et al. 2005b) |
Marinococcus luteus | Novel species | ISP5 + 10% NaCl/28 ℃/1 week | Barkol Lake sediment/Xinjiang, China | (Wang et al. 2009a) |
Microbacterium album | Novel species | R2A/28 ℃/5 days | Desert sample/Saudi Arabia | (Yang et al. 2018b) |
Microbacterium deserti | Novel species | R2A/28 ℃/5 days | Desert sample/Saudi Arabia | (Yang et al. 2018b) |
Microbacterium halotolerans | Novel species | ISP5 + 15% KCl/28 ℃/2 weeks | Hypersaline soil/Qinghai, China | (Li et al. 2005a) |
Microbulbifer halophilus | Novel species | ISP5 + 10% MgCl2/37 ℃ | Saline soil/Xinjiang, China | (Tang et al. 2008b) |
Myceligenerans halotolerans | Novel species | GTY + 5% KCl/37 ℃/2 weeks | Qijiaojing salt lake soil/Xinjiang, China | (Wang et al. 2011) |
Nesterenkonia halophila | Novel species | SG + 25% KCl/28 ℃/2 weeks | Saline soil/ Xinjiang, China | (Li et al. 2008) |
Nesterenkonia halotolerans | Novel species | ISP5 + 15% MgCl2/28 ℃/2 weeks | Hypersaline soil/ Xinjiang, China | (Li et al. 2004b) |
Nesterenkonia natronophila | Novel species | PCA + 2% NaCl (pH 10)/30 ℃/10 days | Lake Magadi sediment/Arusha, Tanzania | (Machin et al. 2019) |
Nesterenkonia rhizosphaerae | Novel species | ISP5 (pH 10)/30 ℃/4 weeks | Desert rhizospheric soil of Reaumuria soongorica/Fukang, Xinjiang, China | (Wang et al. 2014) |
Nesterenkonia xinjiangensis | Novel species | ISP5 + 15% KCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2004b) |
Nocardiopsis ansamitocini | Novel species | ISP2 (pH 10)/30 ℃/4 weeks | Saline-alkali soil/Xinjiang, China | (Zhang et al. 2016b) |
Nocardiopsis litoralis | Novel species | MA + 10% NaCl / 25 ℃ / 2 weeks | Sea anemone/Naozhou Island, China | (Chen et al. 2009h) |
Nocardiopsis salina | Novel species | ISP5 + 20% NaCl/28 ℃/1 week | Hypersaline soil/Xinjiang, China | (Li et al. 2004c) |
Nocardiopsis terrae | Novel species | MA / 30 ℃/2 weeks | Saline soil from Qaidam Basin/Qinghai, China | (Chen et al. 2010c) |
Nocardiopsis xinjiangensis | Novel species | ISP5 + 10% NaCl/28 ℃/4 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003a) |
Ornithinicoccus halotolerans | Novel species | R2A (pH 10)/30 ℃/3 weeks | Karamayi desert sample/Xinjiang, China | (Zhang et al. 2016d) |
Paracoccus saliphilus | Novel species | ISP5 + 10% NaCl/28 ℃/2 weeks | Saline soil/Xinjiang, China | (Wang et al. 2009c) |
Paraliobacillus quinghaiensis | Novel species | MA + 10% NaCl/28 ℃/4 weeks | Sediment sample of Dabuxun salt lake/Qinghai, China | (Chen et al. 2009d) |
Phytoactinopolyspora endophytica | Novel genus | R2A / 28 ℃ / 4 weeks | Root tissue of Glycyrrhiza uralensis/Yili county, Xinjiang, China | (Li et al. 2015) |
Pontibacillus halophilus | Novel species | MA + 20% NaCl / 28 ℃ / 4 weeks | Sea urchin/Leizhou Bay, China | (Chen et al. 2009m) |
Pontibacillus litoralis | Novel species | MA/28 ℃/2 weeks | Sea anemone/Naozhou Island, China | (Chen et al. 2010d) |
Prauserella aidingensis | Novel species | CCMS/37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Prauserella alba | Novel species | SCA + 20% NaCl/28 ℃/4 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003c) |
Prauserella flava | Novel species | CCMS / 37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Prauserella halophila | Novel species | SCA + 20% NaCl/28 ℃/4 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003c) |
Prauserella salsuginis | Novel species | CCMS/37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Prauserella sediminis | Novel species | CCMS/37 ℃/3 weeks | Brine sample of Aiding Lake/Xinjiang, China | (Li et al. 2009) |
Psychroflexus sediminis | Novel species | MA/28 ℃/2 weeks | Dachaidamu salt lake sediment/Qinghai, China | (Chen et al. 2009a) |
Saccharomonospora paurometabolica | Novel species | ISP5 + 20% NaCl/28 ℃/4 weeks | Soil sample/Xinjiang, China | (Li et al. 2003b) |
Saccharomonospora saliphila | Novel species | ISP5 + 20% NaCl/28 ℃/4 weeks | Muddy soil/Gulbarga, India | (Syed et al. 2008) |
Saccharopolyspora deserti | Novel species | R2A + 5% NaCl/37 ℃/1 week | Desert sand/Saudi Arabia | (Yang et al. 2018a) |
Saccharopolyspora halophila | Novel species | CCMS + 15% NaCl/28 ℃/3 weeks | Hypersaline soil/Xinjiang, China | (Tang et al. 2009a) |
Saccharopolyspora qijiaojingensis | Novel species | CCMS / 28 ℃/3 weeks | Soil sample of Qijiaojing salt lake/Xinjiang, China | (Tang et al. 2009e) |
Salinicoccus albus | Novel species | MA + 30% NaCl/28 ℃/4 weeks | Brine sample of Yipinlang salt mine/Yunnan, China | (Chen et al. 2009b) |
Salinicoccus luteus | Novel species | MA + 15% NaCl/28 ℃/2 weeks | Desert soil, Wadi Sannur, Egypt | (Zhang et al. 2007b) |
Salinicoccus salitudinis | Novel species | MA + 10% NaCl/28 ℃/2 weeks | Saline soil/Qaidam, China | (Chen et al. 2008a) |
Salinimicrobium terrae | Novel species | MA/28 ℃/2 weeks | Saline soil from Chaka salt lake/Qinghai, China | (Chen et al. 2008b) |
Salinisphaera halophila | Novel species | CCMS/28 ℃/3 weeks | Brine sample/Shiyang salt well, Yunnan, China | (Zhang et al. 2012a) |
Saliphagus infecundisoli | Novel genus | GM + 13% NaCl/37 ℃/4 weeks | Saline soil/Loulan, Xinjiang, China | (Yin et al. 2017) |
Sinococcus qinghaiensis | Novel genus | SG + 25% KCl/28 ℃ / 2 weeks | Hypersaline soil/Qinghai, China | (Li et al. 2006b) |
Sphingomonas hunanensis | Novel species | MA + 5% NaCl/28 ℃ / 2 weeks | Forest soil/Hunan, China | (Chen et al. 2011b) |
Streptomonospora alba | Novel species | SCA + 20% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Li et al. 2003d) |
Streptomonospora amylolytica | Novel species | SCA + 20% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cai et al. 2009) |
Streptomonospora flavalba | Novel species | SCA + 20% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cai et al. 2009) |
Streptomonospora halophila | Novel species | ISP5 + 10% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cai et al. 2008) |
Streptomonospora salina | Novel genus | ISP5 + 15% NaCl/28 ℃/2 weeks | Hypersaline soil/Xinjiang, China | (Cui et al. 2001) |
Streptomyces fukangensis | Novel species | CCMS (pH10)/30 ℃/4 weeks | Saline-alkaline soil/Fukang, Xinjiang, China | (Zhang et al. 2013) |
Streptomyces tritolerans | Novel species | SCA/28 ℃/2 weeks | Alkaline soil/Gulbarga, India | (Syed et al. 2007) |
Tenuibacillus halotolerans | Novel species | CCMS/37 ℃/1 week | Qijiojing Lake sediment/ Xinjiang, China | (Gao et al. 2013) |
Virgibacillus albus | Novel species | CCMS/28 ℃/2 weeks | Lop Nur salt lake/Xinjiang, China | (Zhang et al. 2012b) |
Virgibacillus litoralis | Novel species | MA + 5% NaCl/30 ℃/2 weeks | Saline soil/Naozhou Island, South China Sea | (Chen et al. 2009e) |
Virgibacillus sediminis | Novel species | MA + 5% NaCl/30 ℃/2 weeks | Keke salt lake/Qinghai, China | (Chen et al. 2009c) |
Yania halotolerans | Novel genus | ISP5 + 15% KCl / 28 ℃/2 weeks | Saline soil/Xinjiang, China | (Li et al. 2004a) |
Yaniella soli | Novel species | NA + 10% NaCl / 30 ℃/2 weeks | Forest soil/Hunan, China | (Chen et al. 2010a) |
Yimella lutea | Novel genus | ISP5 + 5% NaCl / 37 ℃/3 weeks | Contaminated plate | (Tang et al. 2010d) |
Zhihengliuella alba | Novel species | ISP5 + 10% NaCl/37 ℃/3 weeks | Saline sample/Xinjiang, China | (Tang et al. 2009b) |
Zhihengliuella halotolerans | Novel genus | MA + 15% NaCl/28 ℃/2 weeks | Saline soil/Qinghai, China | (Zhang et al. 2007a) |
Zhihengliuella salsuginis | Novel species | MA + 5% NaCl/30 ℃/2 weeks | Xiangli Salt Mine/Hunan, China | (Chen et al. 2010b) |
* ASW Artifcial sea water agar (Eguchi et al.1996), CCMS Cellulose-casein multi salt agar (Tang et al.2008a), GM Gauze medium (Atlas 1993), GTY Glucose-tryptone-yeast medium (Tang et al.2010e), HM Horikoshi medium (Horikoshi 1990), ISP5 International Streptomyces Project medium 5(Shirling and Gottlieb 1966), LB Lutia Berteni medium (Atlas 1993), MA Marine Agar (Difco), NA Nutrient Agar (Atlas 1993), R2A Reasoner's 2A agar (Reasoner and Geldreich 1985), SCA Starch Casein Agar (Kϋster and Williams 1964), SG Sehgal and Gibbon medium (Sehgal and Gibbons 1960), SSDM Sea-salt defned medium (Quesada et al.1987) |