+Advanced Search
Article Contents

Citation:

Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing

  • Received Date: 2020-02-14
    Fund Project:

    This work is supported by the Natural Science Foundation of China (no. 41676178), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao), China (nos. 2018SDKJ0104-4, 2018SDKJ0406-6), the National Key Research and Development Program of China (no. 2017YFA0603200), and the Grant from Education Department of Shandong Province (S190007170001).

  • Marine microbial eukaryotes are important primary producers and play critical roles in key biogeochemical cycles. Recent advances in sequencing technology have focused attention on the extent of microbial biodiversity, revealing a huge, previously underestimated phylogenetic diversity with many new lineages. This technology has now become the most important tool to understand the ecological significance of this huge and novel diversity in polar oceans. In particular, high-throughput sequencing technologies have been successfully applied to enumerate and compare marine microbial diversity in polar environments. Here, a brief overview of polar microbial eukaryote diversity, as revealed by in-situ surveys of the high-throughput sequencing on 18S rRNA gene, is presented. Using these ‘omic’ approaches, further attention still needs to be focused on diferences between specific locations and/or entire polar oceans and on bipolar comparisons of diversity and distribution.
  • 加载中
  • Agaard K, Swift JH, Carmack EC (1985) Thermohaline circulation in the Arctic Mediterranean seas. J Geophys Res Oceans 90(C3):4833-4846
    AASSP (2011) Australian Commonwealth Government Australian Antarctic Science Strategic Plan 2011-2012 to 2020-2021. Australian Commonwealth Government, Barton
    Alcamán-Arias ME, Farías L, Verdugo J, Alarcón-Schumacher T, Díez B (2018) Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer. FEMS Microbiol Lett 365:fny090
    Bachy C, López-García P, Vereshchaka A, Moreira D (2011) Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the North Pole at the end of the polar night. Front Microbiol 2:106
    Balzano S, Marie D, Gourvil P, Vaulot D (2012) Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from low cytometry sorted samples. ISME J 6:1480
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335-336
    Cavicchioli R (2015) Microbial ecology of Antarctic. Nat Rev Microbiol 13:691-706
    Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431-438
    Comeau AM, Li WK, Tremblay JÉ, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6:e27492
    Comeau AM, Philippe B, Thaler M, Gosselin M, Poulin M, Lovejoy C (2013) Protists in Arctic drift and land fast sea ice. J Phycol 49:229-240
    de la Iglesia R, Trefault N (2012) Marine photosynthetic eukaryotes in polar systems:unveiling phytoplankton diversity and composition in Antarctic waters. Rev Chil Hist Nat 85:435-443
    de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, Surkont J, Leite RB, Pereira-Leal JB, Torgo L, Magalhães C (2019) Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic Sea-Ice regime. Microb Ecol 78:388-408
    Dìez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942-2951
    Doolittle DF, Li WK, Wood AM (2008) Winter time abundance of picoplankton in the Atlantic sector of the Southern Ocean. Nova Hedwigia 133:147-160
    Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517-520
    Ehrenberg CG (1840) Charakteristik von 274 neuen Arten von Infusorien. Deutsche Akad Wiss, Berlin, pp 197-219
    Fuentes S, Arroyo JI, Rodríguez-Marconi S, Masotti I, Alarcón-Schumacher T, Polz MF, Trefault N, De la Iglesia R, Díez B (2019) Summer phyto-and bacterioplankton communities during low and high productivity scenarios in the Western Antarctic peninsula. Polar Biol 42:159-169
    Godhe A, Asplund ME, Harnstrom K, Saravanan V, Tyagi A, Karunasagar I (2008) Quantiication of diatom and dinolagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol 74:7174-7182
    Gong J, Dong J, Liu X, Massana R (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164(3):369-379
    Grzymski JJ, Riesenfeld CS, Williams TJ, Dussaq AM, Ducklow H, Erickson M, Cavicchioli R, Murray A (2012) A metagenomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1901-1915
    Hancock AM, Davidson AT, McKinlay J, McMinn A, Schulz K, van den Enden R (2018) Ocean acidiication changes the structure of an Antarctic coastal protistan community. Biogeosciences 15:2393-2410
    Hegseth EN, Sundjord A (2008) Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J Mar Syst 74:108-119
    Holland MM, Bitz CM (2003) Polar ampliication of climate change in coupled models. Clim Dyn 21:221-232
    Horner RA (1985) Sea Ice biota. CRC Press, Baron Rouge, p 215
    Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255
    Hyoung MJ, Sang HL, Seung WJ, Hans-Uwe D, Jin HL (2012) Latitudinal variation of phytoplankton communities in the western Arctic Ocean. Deep Sea Res PT II 81:3-17
    Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P et al (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project(MMETSP):illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889
    Kilias ES, Peeken I, Meties K (2014) Insight into protist diversity in Arctic sea ice and melt-pond aggregate obtained by pyrosequencing. Polar Res 33(1):23466
    Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO 2 sink due to recent climate change. Science 136:1735-1738
    Liu Q, Jiang Y, Wang Q, Wang M, McMinn A, Zhao Q, Xue C, Wang X, Dong J, Yu Y, Han Y, Zhao J (2019) Using picoeukaryote communities to indicate the spatial heterogeneity of the Nordic Seas. Ecol Indic 107:105582
    Liu Q, Jiang Y (2020) Application of microbial network analysis to discriminate environmental heterogeneity in Fildes Peninsula, Antarctica. Mar Pollut Bull 156:111244
    Li WK, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539-539
    Lovejoy C (2015) Changing views of Arctic protists (marine microbial eukaryotes) in a changing Arctic. Acta Protozool 53:91-100
    Lovejoy C, Galand PE, Kirchman DL (2011) Picoplankton diversity in the Arctic Ocean and surrounding seas. Mar Biodivers 41:5-12
    Lovejoy C, Legendre L, Martineau MJ, Bâcle J, Von Quillfeldt CH (2002a) Distribution of phytoplankton and other protists in the North Water. Deep Sea Res PT II 49:5027-5047
    Lovejoy C, Legendre L, Price NM (2002b) Prolonged diatom blooms and microbial food web dynamics:experimental results from an Arctic polynya. Aquat Microb Ecol 29:267-278
    Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085-3095
    Luo W, Li HR, Cai MH, He JF (2009) Diversity of microbial eukaryotes in Kongsjorden, Svalbard. Hydrobiologia 636:233-248
    Luo W, Li H, Gao S, Yu Y, Lin L, Zeng Y (2016) Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol 39:605-616
    Luo W, Li H, Gao X, Lin L, Yu Y, Zeng Y (2018) Microbial eukaryotic diversity with emphasis on picoprasinophytes under the sea ice of the central Arctic Ocean in summer. Curr Sci 115:1709-1713
    Marquardt M, Vader A, Stübner EI, Reigstad M, Gabrielsen TM (2016) Strong seasonality of marine microbial eukaryotes in a high-arctic jord (Isjorden, in West Spitsbergen, Norway). Appl Environ Microbiol 82:1868-1880
    Martin J, Tremblay JÉ, Gagnon J, Tremblay G, Lapoussiére A, Jose C, Poulin M, Gosselin M, Gratton Y, Michel C (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69-84
    Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213-218
    Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic lagellates in the world oceans. Environ Microbiol 8:1515-1522
    McNeil BI, Matear RJ (2008) Southern Ocean acidiication:a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci 105:18860-18864
    Meties K, von Appen WJ, Kilias E, Nicolaus A, Nöthig EM (2016) Biogeography and photosynthetic biomass of arctic marine picoeukaroytes during summer of the record sea ice minimum 2012. PLoS ONE 11:e0148512
    Mikhailov IS, Zakharova YR, Bukin YS, Galachyants YP, Petrova DP, Sakirko MV, Likhoshway YV (2019) Co-occurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microb Ecol 77:96-109
    Monier A, Terrado R, Thaler M, Comeau A, Medrinal E, Lovejoy C (2013) Upper Arctic Ocean water masses harbor distinct communities of heterotrophic lagellates. Biogeosciences 10:4273-4286
    Moon-van-de Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607-610
    Moreno-Pino M, De la Iglesia R, Valdivia N, Henríquez-Castilo C, Galán A, Díez B, Trefault N (2016) Variation in coastal Antarctic microbial community composition at sub-mesoscale:spatial distance or environmental iltering? FEMS Microbiol Ecol 92:iw008
    Onda DF, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C (2017) Seasonal and interannual changes in ciliate and dinolagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci 4:16
    Pabi S, van Dijken GL, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998-2006. J Geophys Res Oceans 113:C8005
    Pedrós-Alió C, Potvin M, Lovejoy C (2015) Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr 139:233-243
    Piquet AMT, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic jords (Spitsbergen). Polar Biol 33:1521-1536
    Piwosz K, Wiktor JM, Niemi A, Tatarek A, Michel C (2013) Mesoscale distribution and functional diversity of picoeukaryotes in the irstyear sea ice of the Canadian Arctic. ISME J 7:1461
    Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, von Quillfeldt C (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes:a irst-attempt assessment. Mar Biodivers 41:13-28
    Rainville L, Lee CM, Woodgate RA (2011) Impact of wind-driven mixing in the Arctic Ocean. Oeanography 24:136-145
    Różańska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the Coastal Arctic Ocean. J Mar Syst 74:887-901
    Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56-60
    Sarmiento JL, Le Quéré C (1996) Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:1346-1350
    Scott FJ, Marchant HJ (2005) Antarctic marine protists, Australian Biological Resources Study. Canberra and Australian Antarctic Division, Hobart, p 563
    Seenivasan R, Sausen N, Medlin LK, Melkonian M (2013) Picomonas judraskeda Gen. ET Sp. Nov.:the irst identiied member of the Picozoa Phylum Nov., a widespread group of picoeukaryotes, formerly known as ‘Picobiliphytes’. PLoS ONE 8:e59565
    Swalethorp R, Dinasquet J, Logares R, Bertilsson S, Kjellerup S, Krabberød AK, Moksnes P, Nielsen TG, Riemann L (2019) Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom. Prog Oceanogr 170:1-10
    Thaler M, Lovejoy C (2012) Distribution and diversity of a protist predator Cryothecomonas (Cercozoa) in Arctic marine waters. J Eukaryot Microbiol 59:291-299
    Torstensson A, Dinasquet J, Chierici M, Fransson A, Riemann L, Wulf A (2015) Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice. Environ Microbiol 17:3869-3881
    Tsubouchi T, Bacon S, Naveira Garabato AC, Aksenov Y, Laxon SW, Fahrbach E, Beszczynska-Möller A, Hansen E, Lee CM, Ingvaldsen RB (2012) The Arctic Ocean in summer:a quasi-synoptic inverse estimate of boundary luxes and water mass transformation. J Geophys Res Ocean 117:C01024
    Turner J, Colowell SR, Marshall GJ, Lachlan-cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279-294
    Wilkins D, Yau S, Williams TJ, Allen MA, Brown MK, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303-335
    Wolf C, Frickenhaus S, Kilias ES, Peeken I, Meties K (2013) Regional variability in eukaryotic protist communities in the Amundsen Sea. Antarct Sci 25:741-751
    Wolf C, Frickenhaus S, Kilias ES, Peeken I, Meties K (2014) Protist community composition in the Paciic sector of the Southern Ocean during austral summer 2010. Polar Biol 37:375-389
    Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79-92
    Zoccarato L, Pallavicini A, Cerino F, Umani SF, Celussi M (2016) Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers. Prog Oceanogr 149:16-26
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(15) PDF downloads(1) Cited by()

Related
Proportional views

Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing

  • 1 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
  • 2 College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
  • 3 Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China;
  • 4 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia;
  • 5 Division of Polar Ocean Environment, Korea Polar Research Institute, 213-3 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Fund Project:  This work is supported by the Natural Science Foundation of China (no. 41676178), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao), China (nos. 2018SDKJ0104-4, 2018SDKJ0406-6), the National Key Research and Development Program of China (no. 2017YFA0603200), and the Grant from Education Department of Shandong Province (S190007170001).

Abstract: Marine microbial eukaryotes are important primary producers and play critical roles in key biogeochemical cycles. Recent advances in sequencing technology have focused attention on the extent of microbial biodiversity, revealing a huge, previously underestimated phylogenetic diversity with many new lineages. This technology has now become the most important tool to understand the ecological significance of this huge and novel diversity in polar oceans. In particular, high-throughput sequencing technologies have been successfully applied to enumerate and compare marine microbial diversity in polar environments. Here, a brief overview of polar microbial eukaryote diversity, as revealed by in-situ surveys of the high-throughput sequencing on 18S rRNA gene, is presented. Using these ‘omic’ approaches, further attention still needs to be focused on diferences between specific locations and/or entire polar oceans and on bipolar comparisons of diversity and distribution.

    HTML

Reference (72)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return