+Advanced Search
Article Contents

Citation:

The insect-killing bacterium Photorhabdus luminescens has the lowest mutation rate among bacteria

  • Received Date: 2020-03-26
    Fund Project:

    This work is supported by the Young Taishan Scholars Program of Shandong Province (tsqn201812024), the Fundamental Research Funds for the Central Universities of China (201822020) to H.L., the Multidisciplinary University Research Initiative Award from the US Army Research Oice (W911NF-09-1-0444 and W911NF-09-1-0411) and National Institutes of Health award (R35-GM122566) to M.L. We thank Wei Yang (IEMB-1 cluster administrator) and Kun Wu for their technical help.

  • Mutation is a primary source of genetic variation that is used to power evolution. Many studies, however, have shown that most mutations are deleterious and, as a result, extremely low mutation rates might be beneicial for survival. Using a mutation accumulation experiment, an unbiased method for mutation study, we found an extremely low base-substitution mutation rate of 5.94×10-11 per nucleotide site per cell division (95% Poisson conidence intervals:4.65×10-11, 7.48×10-11) and indel mutation rate of 8.25×10-12 per site per cell division (95% conidence intervals:3.96×10-12, 1.52×10-11) in the bacterium Photorhabdus luminescens ATCC29999. The mutations are strongly A/T-biased with a mutation bias of 10.28 in the A/T direction. It has been hypothesized that the ability for selection to lower mutation rates is inversely proportional to the effective population size (drift-barrier hypothesis) and we found that the effective population size of this bacterium is significantly greater than most other bacteria. This finding further decreases the lower-bounds of bacterial mutation rates and provides evidence that extreme levels of replication fidelity can evolve within organisms that maintain large effective population sizes.
  • 加载中
  • Alfred G, Knudson J (1971) Mutation and cancer:statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820-823
    Angiuoli SV, Salzberg SL (2010) Mugsy:fast multiple alignment of closely related whole genomes. Bioinformatics 27:334-342
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST server:rapid annotations using subsystems technology. BMC Genom 9:75
    Bateman A (1959) The viability of near-normal irradiated chromosomes. Int J Radiat Biol Relat Stud Phys Chem Med 1:170-180
    Boemare N, Akhurst R, Mourant R (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Evol Microbiol 43:249-255
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic:a lexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120
    Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129-2132
    Chalabaev S, Turlin E, Charles JF, Namane A, Pagès S, Givaudan A, Brito-Fravallo E, Danchin A, Biville F (2007) The HcaR regulatory protein of Photorhabdus luminescens afects the production of proteins involved in oxidative stress and toxemia. Proteomics 7:4499-4510
    Daborn PJ, Waterield N, Blight MA, Ffrench-Constant RH (2001) Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J Bacteriol 183:5834-5839
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Wofendin H, Garnett MJ, Bottomley W (2002) Mutations of the BRAF gene in human cancer. Nature 417:949-954
    Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P (2002) Identiication, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 68:3780-3789
    Derzelle S, Turlin E, Duchaud E, Pages S, Kunst F, Givaudan A, Danchin A (2004) The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects. J Bacteriol 186:1270-1279
    Dettman JR, Sztepanacz JL, Kassen R (2016) The properties of spontaneous mutations in the opportunistic pathogen Pseudomonas aeruginosa. BMC Genom 17:27
    Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS (2017) Genomewide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio ischeri. Mol Biol Evol 34:93-109
    Drake JW (1991) A constant rate of spontaneous mutation in DNAbased microbes. Proc Natl Acad Sci USA 88:7160-7164
    Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles J-F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307-1313
    Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465-523
    Eyrewalker A, Keightley PD (2007) The distribution of itness efects of new mutations. Nat Rev Genet 8:610-618
    Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M (2015) The spontaneous mutation rate in the ission yeast Schizosaccharomyces pombe. Genetics 201:737-744
    Ffrench-Constant R, Waterield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D (2003) Photorhabdus:towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433-456
    Gaudriault S, Sylvie P, Anne L, Christine L (2008) Plastic architecture of bacterial genome revealed by comparative genomics of Photorhabdus variants. Genome Biol 9:R117
    Gregor C, Gwosch KC, Sahl SJ, Hell SW (2018) Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc Natl Acad Sci 115:962-967
    Halligan DL, Keightley PD (2009) Spontaneous mutation accumulation studies in evolutionary genetics. Annu Rev Ecol Evol Syst 40:151-172
    Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D (2017) Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 45:1889-1901
    Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, Davey JW, Jiggins CD (2015) Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol 32:239-243
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079
    Long H, Sung W, Miller SF, Ackerman MS, Doak TG, Lynch M (2015) Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deicient Pseudomonas luorescens ATCC948. Genome Biol Evol 7:262-271
    Long H, Winter DJ, Chang YC, Sung W, Wu SH, Balboa M, Azevedo RBR, Cartwright RA, Lynch M, Zufall RA (2016) Low basesubstitution mutation rate in the germline genome of the ciliate Tetrahymena thermophila. Genome Biol Evol 8:3629-3639
    Long H, Doak TG, Lynch M (2018a) Limited mutation-rate variation within the Paramecium aurelia species complex. G3 Genes Genomes Genet 8:2523-2526
    Long H, Miller SF, Emily W, Michael L (2018b) Speciicity of the DNA mismatch repair system (MMR) and mutagenesis bias in bacteria. Mol Biol Evol 35:2414-2421
    Long H, Sung W, Kucukyildirim S, Williams E, Miller SF, Guo W, Patterson C, Gregory C, Strauss C, Stone C (2018c) Evolutionary determinants of genome-wide nucleotide composition. Nat Ecol Evol 2:237-240
    Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland
    Lynch M, Bürger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84:339-344
    Lynch M, Sung W, Morris K, Cofey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL, Thomas WK (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci 105:9272-9277
    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17:704-714
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The genome analysis toolkit:a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297-1303
    Morgan AD, Ness RW, Keightley PD, Colegrave N (2014) Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii. Evolution 68:2589-2602
    Mukai T (1964) The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:1-19
    Mulley G, Beeton ML, Wilkinson P, Vlisidou I, Ockendon-Powell N, Hapeshi A, Tobias NJ, Nollmann FI, Bode HB, Van Den Elsen J (2015) From insect to man:Photorhabdus sheds light on the emergence of human pathogenicity. PLoS ONE 10:e0144937
    Nguyen DT, Wu B, Long H, Zhang N, Patterson C, Simpson S, Morris K, Thomas WK, Lynch M, Hao W (2020) Variable spontaneous mutation and loss of heterozygosity among heterozygous genomes in yeast. Mol Biol Evol (in press)
    R Development Core Team (2012) R:a language and environment for statistical computing, Vienna
    Richardson WH, Schmidt TM, Nealson K (1988) Identiication of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54:1602-1605
    Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24-26
    Seppey M, Manni M, Zdobnov EM (2019) BUSCO:assessing genome assembly and annotation completeness. In:Kollmar M (eds) Gene prediction. Methods Mol Biol (NY) vol 1962, pp 227-245
    Sniegowski P, Raynes Y (2013) Mutation rates:how low can you go? Curr Biol 23:R147-R149
    Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012a) Driftbarrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci 109:18488-18492
    Sung W, Tucker AE, Doak TG, Choi E, Thomas WK, Lynch M (2012b) Extraordinary genome stability in the ciliate Paramecium tetraurelia. Proc Natl Acad Sci USA 109:19339-19344
    Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C, Cooper VS, Lynch M (2016) Evolution of the insertion-deletion mutation rate across the tree of life. G3 Genes Genomes Genet 6:2583-2591
    Tounsi S, Mark B, Samir J, Andréa P (2006) From insects to human hosts:identification of major genomic differences between entomopathogenic strains of Photorhabdus and the emerging human pathogen Photorhabdus asymbiotica. Int J Med Microbiol 296:521-530
    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J (2013) From FastQ data to high-conidence variant calls:the genome analysis toolkit best practices pipeline. Curr Protoc Bioinf 43:11-33
    Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler:resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595
    Winson MK, Swift S, Hill PJ, Sims CM, Griesmayr G, Bycroft BW, Williams P, Stewart GS (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn 5 constructs. FEMS Microbiol Lett 163:193-202
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(12) PDF downloads(1) Cited by()

Related
Proportional views

The insect-killing bacterium Photorhabdus luminescens has the lowest mutation rate among bacteria

  • 1 Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao 266003, Shandong, China;
  • 2 Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
  • 3 Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
Fund Project:  This work is supported by the Young Taishan Scholars Program of Shandong Province (tsqn201812024), the Fundamental Research Funds for the Central Universities of China (201822020) to H.L., the Multidisciplinary University Research Initiative Award from the US Army Research Oice (W911NF-09-1-0444 and W911NF-09-1-0411) and National Institutes of Health award (R35-GM122566) to M.L. We thank Wei Yang (IEMB-1 cluster administrator) and Kun Wu for their technical help.

Abstract: Mutation is a primary source of genetic variation that is used to power evolution. Many studies, however, have shown that most mutations are deleterious and, as a result, extremely low mutation rates might be beneicial for survival. Using a mutation accumulation experiment, an unbiased method for mutation study, we found an extremely low base-substitution mutation rate of 5.94×10-11 per nucleotide site per cell division (95% Poisson conidence intervals:4.65×10-11, 7.48×10-11) and indel mutation rate of 8.25×10-12 per site per cell division (95% conidence intervals:3.96×10-12, 1.52×10-11) in the bacterium Photorhabdus luminescens ATCC29999. The mutations are strongly A/T-biased with a mutation bias of 10.28 in the A/T direction. It has been hypothesized that the ability for selection to lower mutation rates is inversely proportional to the effective population size (drift-barrier hypothesis) and we found that the effective population size of this bacterium is significantly greater than most other bacteria. This finding further decreases the lower-bounds of bacterial mutation rates and provides evidence that extreme levels of replication fidelity can evolve within organisms that maintain large effective population sizes.

    HTML

Reference (53)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return