Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms
-
-
Abstract
Culturing has been the cornerstone of microbiology since Robert Koch first successfully cultured bacteria in the late nineteenth century. However, even today, the majority of microorganisms in the marine environment remain uncultivated. There are various explanations for the inability to culture bacteria in the laboratory, including lack of essential nutrients, osmotic support or incubation conditions, low growth rate, development of micro-colonies, and the presence of senescent or viable but nonculturable (VBNC) cells. In the marine environment, many bacteria have been associated with dormancy, as typified by the VBNC state. VBNC refers to a state where bacteria are metabolically active, but are no longer culturable on routine growth media. It is apparently a unique survival strategy that has been adopted by many microorganisms in response to harsh environmental conditions and the bacterial cells in the VBNC state may regain culturability under favorable conditions. The resuscitation of VBNC cells may well be an important way to cultivate the otherwise uncultured microorganisms in marine environments. Many resuscitation stimuli that promote the restoration of culturability have so far been identified; these include sodium pyruvate, quorum sensing autoinducers, resuscitation-promoting factors Rpfs and YeaZ, and catalase. In this review, we focus on the issues associated with bacterial culturability, the diversity of bacteria entering the VBNC state, mechanisms of induction into the VBNC state, resuscitation factors of VBNC cells and implications of VBNC resuscitation stimuli for cultivating these otherwise uncultured microorganisms. Bringing important microorganisms into culture is still important in the era of high-throughput sequencing as their ecological functions in the marine environment can often only be known through isolation and cultivation.
-
-