• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Metabolomic profiling reveals that the heterogeneity of microhabitats can assist intertidal mollusks in surviving extreme cold events

  • Abstract: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails Littorina brevicula and limpets Cellana toreuma from different microhabitats (snail: exposed vs. shaded rock; limpet, rock vs. tidal pool) during extreme low-temperature event in winter. Results showed that microhabitat type, substrate temperature, air temperature, wind speed, and light intensity contribute notably to the body temperatures. During extreme low-temperature events, mollusks collected from different microhabitats exhibited microhabitat-specific metabolomic responses that are associated with cellular stress response, energy metabolism, immune response, nucleotide metabolism, and osmoregulation. These metabolic pathways were highly induced in the more exposed areas (exposed rock for snails and rocky environment for limpets). Notably, in different microhabitats, the metabolites enriched from these pathways showed significant correlations with microclimate environmental variables (i.e., substrate temperature, wind speed, and body temperature). Overall, these findings highlight the importance of microhabitat heterogeneity for intertidal species surviving extreme cold events and are essential for understanding cold adaptation of intertidal species in the context of climate change.

     

/

返回文章
返回