• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Colonization–competition dynamics of basal species shape food web complexity in island metacommunities

  • Abstract: Exploring how food web complexity emerges and evolves in island ecosystems remains a major challenge in ecology. Food webs assembled from multiple islands are commonly recognized as highly complex trophic networks that are dynamic in both space and time. In the context of global climate change, it remains unclear whether food web complexity will decrease in a monotonic fashion when undergoing habitat destruction (e.g., the inundation of islands due to sea-level rise). Here, we develop a simple yet comprehensive patch-dynamic framework for complex food web metacommunities subject to the competition-colonization tradeoff between basal species. We found that oscillations in food web topological complexity (characterized by species diversity, mean food chain length and the degree of omnivory) emerge along the habitat destruction gradient. This outcome is robust to changing parameters or relaxing the assumption of a strict competitive hierarchy. Having oscillations in food web complexity indicates that small habitat changes could have disproportionate negative effects on species diversity, thus the success of conservation actions should be evaluated not only on changes in biodiversity, but also on system robustness to habitat alteration. Overall, this study provides a parsimonious mechanistic explanation for the emergence of food web complexity in island ecosystems, further enriching our understanding of metacommunity assembly.

     

/

返回文章
返回