• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Metabolic diversification of anaerobic methanotrophic archaea in a deep-sea cold seep

  • Abstract: Anaerobic methanotrophic archaea (ANME) can assimilate methane and govern the greenhouse effect of deep-sea cold seeps. In this study, a total of 13 ANME draft genomes representing five ANME types (ANME-1a, ANME-1b, ANME-2a, ANME-2b and ANME-2c), in size between 0.8 and 1.8 Mbp, were obtained from the Jiaolong cold seep in the South China Sea. The small metagenome-assembled genomes (MAGs) contained all the essential pathways for methane oxidization and carbon dioxide fixation. All genes related to nitrate and sulfate reduction were absent from the MAGs, indicating their syntrophic dependence on partner organisms. Aside from acetate secretion and sugar storage, propanoate synthesis pathway, as an alternative novel carbon flow, was identified in all the MAGs and transcriptionally active. Regarding type-specific features of the MAGs, the genes encoding archaellum and bacteria-derived chemotaxis were specific to ANME-2, perhaps for fitness under fluctuation of methane and sulfate concentration flux. Our genomic and transcriptomic results strongly suggested that ANME could carry out simple carbon metabolism from C1 assimilation to C3 biosynthesis in the SCS cold seep, which casts light on a novel approach for synthetic biology.

     

/

返回文章
返回