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Abstract
Exogenous RNA poses a continuous threat to genome stability and integrity across various organisms. Accumulating evidence 
reveals complex mechanisms underlying the cellular response to exogenous RNA, including endo-lysosomal degradation, 
RNA-dependent repression and innate immune clearance. Across a variety of mechanisms, the natural anti-sense RNA-
dependent defensive strategy has been utilized both as a powerful gene manipulation tool and gene therapy strategy named 
RNA-interference (RNAi). To optimize the efficiency of RNAi silencing, a comprehensive understanding of the whole life 
cycle of exogenous RNA, from cellular entry to its decay, is vital. In this paper, we review recent progress in comprehend-
ing the recognition and elimination of foreign RNA by cells, focusing on cellular entrance, intracellular transportation, and 
immune-inflammatory responses. By leveraging these insights, we highlight the potential implications of these insights for 
advancing RNA interference efficiency, underscore the need for future studies to elucidate the pathways and fates of vari-
ous exogenous RNA forms, and provide foundational information for more efficient RNA delivery methods in both genetic 
manipulation and therapy in different organisms.
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Introduction

The invasion of exogenous RNA (e.g., derived from RNA 
viruses, diet derived-RNAs, artificially synthesized RNAs), 
can interfere with regular gene expression within the host 
cell through non-sexual movement of RNAs between the cell 
and the environment or other organisms. This process plays 
a vital role in maintaining cell metabolism, neurotransmitter 
release, fertilization, and a variety of other vital functions 
(Scott et al. 2014). In addition, exogenous RNA invasion can 
contribute to genome evolution. For example, endogenous 
retroviruses (ERVs), which have existed in human genomes 
for millions of years, may originate from RNA viruses 
(Koonin et al. 2021). Several recent studies have shown that 
ERVs act as important components of the antiviral immune 
response. These remnants of once-infectious retroviruses 
can not only regulate cellular immune activation, but also 
directly target invading viral pathogens (Alcazer et al. 2020; 
Srinivasachar Badarinarayan and Sauter 2021). It is, there-
fore, reasonable to assume that exogenous invasion events 
are also under natural selection and can influence the host’s 
evolution (Emamalipour et al. 2020).
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Exogenous RNAs are usually internalized by various 
endocytic pathways, which may involve macropinocytosis, 
phagocytosis, clathrin/caveolar/lipid raft-mediated endocy-
tosis, or a variety of other still poorly characterized mecha-
nisms (Mercer et al. 2010; Renard and Boucrot 2021). Dur-
ing their vesicular transport through the cytoplasm, several 
cellular defense mechanisms, such as lysosome enzymatic 
hydrolysis, the RNA interference-dependent defense system 
and innate immune responses, are activated. However, exog-
enous RNA can sometimes escape degradation and cause 
dysregulation of the host cell’s gene expression (Del Pozo-
Acebo et al. 2021; Gaucherand and Gaglia 2022).

Napoli et al. (1990) overexpressed chalcone synthetase 
(CHS) in petunia and unexpectedly found that endogenous 
and introduced CHS levels in transformed strains were 
50 times lower than that in the wild type, leading to the 
hypothesis that introduced gene “co-repressing” the endog-
enous CHS gene is the process of RNAi. After Romano 
and Macino’s (1992) report in Neurospora crassa, Guo and 
Kemphues (1995) also noted that the introduction of homol-
ogous RNA sequences caused “quelling” of the correspond-
ing endogenous gene, suggesting that RNA silencing also 
exists in Caenorhabditis elegans. Since then, introducing 
antisense RNA has become one of the most appealing means 
of eliminating gene expression and led to the development of 
the RNAi technique (Elbashir et al. 2001; Fire et al. 1998).

RNA interference has various applications, particularly 
in treating viral infections, neurodegenerative disease (Ger-
main et al. 2023), cardiovascular disease (Ruotsalainen et al. 
2021) and acquired genetic diseases including various can-
cers (Tian et al. 2021). Naked RNA is, however, susceptible 
to degradation by nucleases and can stimulate the innate 
immune system (Kanasty et al. 2013). To improve RNAi 
efficiency, recent efforts have involved modifying the carrier 
systems or combining the use of small molecules to enhance 
the endosomal escape of exogenous RNA (Du Rietz et al. 
2020; Nguyen and Yates 2021).

In this review, we discuss the life cycle of exogenous 
RNA after entering cells, how cells recognize and degrade 
exogenous RNA, and how they protect genome integrity 
using RNA interference. By summarizing recent advances 
in understanding cellular defense strategies in response to 
exogenous RNA invasion, we aim to inspire future improve-
ments in the practice of RNA interference in both genetic 
research and therapy.

Cellular uptake of exogenous RNA

According to the size and properties of internalized material, 
exogenous RNA enters cells via different endocytosis path-
ways including macropinocytosis, phagocytosis and clathrin/
caveolin/lipid raft-mediated endocytosis (Fig. 1).

Macropinocytosis is a non-specific process that can 
encapsulate foreign substances with size range from 0.5 to 
5 μm, such as bacteria, mimivirus, herpes simplex virus-1 
(HSV-1) and adenovirus 3 (Fig. 1IV) (Kazmierczak et al. 
2020; Mercer et al. 2010). It is an endocytic process initiated 
by the formation of plasma membrane ruffles and is mainly 
driven by actin filament polymerization (Buckley and King 
2017). Macropinocytosis is tightly regulated and involves 
the interplay of various signaling molecules and the actin 
cytoskeleton. The molecular mechanism of macropinocyto-
sis has been extensively studied in recent decades, including 
the initiation process, actin polymerization, membrane ruffle 
closure, macropinosome maturation and eventually the deg-
radation of mature macropinosomes or membrane recycling 
(Egami 2016; Stow et al. 2020).

Phagocytosis is a cellular process in which special-
ized cells, namely phagocytes, ingest or engulf other cells 
or particles, typically over 0.5 μm in size, such as bacteria 
or cellular debris (Fig. 1III) (Zachar and Boza 2020). Phago-
cytes can be free-living single-celled organisms, such as cili-
ates, or body cells such as neutrophils in peripheral blood. 
In some ciliates, phagocytosis acts as a feeding mechanism, 
while in higher eukaryotes it primarily serves as a defensive 
response against invasion by antigens (Allen and Fok 2000; 
Hartenstein and Martinez 2019).

During phagocytosis, the cell’s plasma membrane is 
directed by cytoskeletal filaments to form pseudopodia, ena-
bling the phagocyte to engulf the particle from the extracel-
lular matrix. Once engulfed, the particle remains compart-
mentalized in an intracellular vesicle known as a phagosome. 
The phagosome is translocated to the perinuclear region with 
an abundance of lysosomes along the microtubule network, 
facilitated mainly by dynein motors and related effectors/
adaptors. Along this journey, the phagosome continuously 
acidifies the internal environment to provide a suitable envi-
ronment for hydrolase activity by multiple transient fusion 
events with endosomal membranes (Desjardins et al. 1994; 
Keller et al. 2017). As the phagosome approaches the lys-
osomes, the engulfed antigen is eventually enzymatically 
degraded within membrane-bound vesicles of the endo-
lysosomal system (i.e., intracellular digestion) (Nguyen and 
Yates 2021; Rosales 2020).

Clathrin/caveolin/lipid raft-mediated endocytosis is the 
process by which cells take up smaller particles ranging 
from about 50 to 200 nm, including polyomavirus simian 
virus 40 (SV-40), human immunodeficiency virus-I (HIV-1), 
vesicular stomatitis virus, influenza A (IAV) and filamentous 
phage (Kiss and Botos 2009; Kotova et al. 2020). Although 
these processes are all carried out by ligands on the internal-
ized cargo and receptors on the cell membrane, they differ 
in various aspects (Kazmierczak et al. 2020).

Clathrin-mediated endocytosis (CME) is a well-studied 
mechanism of endocytosis that relies on the protein clathrin 



575Marine Life Science & Technology (2023) 5:573–584	

1 3

(Fig. 1II). Clathrin forms a lattice-like structure that coats 
the plasma membrane, facilitating the formation of clathrin-
coated pits. These pits invaginate and pinch off, forming 
clathrin-coated vesicles that transport cargo into the cell. 
Adaptor proteins, such as AP2, help recruit cargo molecules 
to the clathrin lattice. Additionally, various accessory pro-
teins and regulatory factors participate in modulating CME 
dynamics and cargo selection (Mettlen et al. 2018).

Caveolin-mediated endocytosis (CavME) involves the 
protein caveolin, which forms flask-shaped invaginations 
called caveolae on the plasma membrane (Fig. 1I) (Parton 
and del Pozo 2013). Caveolae function as specialized lipid 
rafts enriched in cholesterol and sphingolipids. Caveolin 
interacts with signaling molecules, receptors, and lipid com-
ponents to mediate endocytosis. Recently, studies have iden-
tified novel roles for caveolin in cellular processes beyond 
endocytosis, including lipid metabolism, mechanotransduc-
tion, and autophagy (Han et al. 2020; Hou et al. 2021; Strip-
poli et al. 2020). The interplay between caveolin and other 
endocytic pathways, such as CME and macropinocytosis, 
has been investigated to uncover their cooperative or com-
petitive relationships (Parton et al. 2018).

Lipid raft-mediated endocytosis involves the selective 
partitioning of specific cargo molecules into lipid rafts, 
which serve as platforms for endocytic internalization. With 
the exact molecular mechanisms underlying this process still 

being investigated, the role of specific lipids, such as cho-
lesterol and sphingolipids, in cargo sorting and endocytic 
regulation has been preliminarily explored (Li et al. 2016b; 
van Meer and de Kroon 2011).

Intracellular transportation of exogenous 
RNA

Following cellular uptake through mechanistically dis-
tinct endocytic pathways, exogenous RNA molecules are 
enclosed within common early/sorting endosomes and fused 
into the typical endosomal network. The endosomal network 
is a dynamic and interlinked transportation system that 
determines whether cargoes will ultimately be delivered to 
lysosomes for degradation or for polarized transport between 
distinct membrane-bound compartments (Elkin et al. 2016). 
The precise pathways and factors involved in endosomal net-
works can vary depending on the type of RNA and delivery 
method (Tokarev et al. 2009).

Endosomal maturation first plays a role in determining the 
degradation of the internalized RNA molecules. Endosomes 
undergo maturation processes that involve fusion with other 
endosomes or with membrane-bound compartments, leading 
to the formation of early endosomes (EEs), late endosomes 
(LEs) and ultimately, lysosomes (Huotari and Helenius 

Fig. 1   Examples of cellular endocytosis processes. I–IV illustrate 
caveolin-mediated endocytosis, clathrin-mediated endocytosis, 
phagocytosis and macropinocytosis, respectively. CAS caveosome, 
EE early endosome, ERC endosomal recycling compartment, LE 

late endosome, MVB multivesicular body, LYS lysosomes, NP nas-
cent phagosome, LP late phagosome, MS macropinosome, PL/EL/
ML phagolysosome, endo-lysosome, and macropinosome fusion with 
lysosome, PM plasma membrane, TGN the trans Golgi network
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2011) (Fig. 1II). The internalized RNA molecules are cap-
tured into endocytic vesicles which undergo multiple rounds 
of homotypic fusion to form EEs. Tubular and cisternal 
structures, as well as vacuolar compartments containing 
intraluminal vesicles (ILVs) that are about 50 nm in diam-
eter (in mammals), have been seen in EEs. These vacuoles 
gradually mature, dissociate from EEs, and are transported 
by multivesicular bodies (MVBs) or endosomal carrier vesi-
cles (ECVs) to the LEs (Bissig and Gruenberg 2013; Wat-
tiaux et al. 2000). The lysosomes then target and fuse with 
LEs inside which there are over 60 kinds of hydrolases that 
initiate the degradation of the entrapped exogenous RNAs.

Within EEs, the initial sorting decisions are made and the 
fates of the internalized receptors are decided. Therefore, 
lots of receptors internalized into EEs are frequently recy-
cled back to the cell surface, either directly from the EEs 
(the fast recycling pathway) or via the endosomal recycling 
compartment (ERCs) in a slow recycling pathway. Examples 
of such receptors that undergo endosomal recycling include 
receptor tyrosine kinases, e.g., the epidermal growth factor 
receptor (ErbBs) family members, insulin-like growth fac-
tor-1 receptor (IGF1R), fibroblast growth factor receptors 
(FGFRs), G protein-coupled receptors, and carrier proteins 
such as transferrin receptors and low-density lipoprotein 
receptors (O'Sullivan and Lindsay 2020). Other recycling 
cargoes such as CI-MPR or sortilin also undergo retrograde 
trafficking to the trans-Golgi network (TGN) for the next 
round of sorting (Capitani and Baldari 2021) (Fig. 1).

Research on the molecular mechanisms of endosomal 
maturation has made significant progress in recent years 
(Margiotta et al. 2020; Wandinger-Ness and Zerial 2014; 
Wang et al. 2022). Rab GTPases are key regulators of endo-
somal maturation. Different Rab proteins associate with spe-
cific stages of endosomes, facilitating the maturation process 
(Egami 2016). For example, Rab5 is predominantly asso-
ciated with early endosomes, whereas Rab7 is involved in 
the transition to late endosomes (Singer-Kruger et al. 1994; 
Yasuda et al. 2016). The recruitment of specific Rab effec-
tors and effector complexes, such as Rab5 effectors (e.g., 
EEA1) and Rab7 effectors (e.g., RILP), plays a critical role 
in endosomal dynamics and fusion events (Langemeyer et al. 
2018). The endosomal sorting protein complexes required 
for transport (ESCRT) also participate in the sorting of cargo 
molecules within endosomes. ESCRT complexes, includ-
ing ESCRT-0, -I, -II, and -III, recruit ubiquitinated cargo 
proteins and facilitate their sequestration into intraluminal 
vesicles within late endosomes. These intraluminal vesicles 
can be either targeted for degradation within lysosomes or 
released as exosomes. The ESCRT machinery also partici-
pates in membrane remodeling events required for endo-
somal maturation and vesicle budding (Sardana and Emr 
2021). Other processes and compounds, such as phospho-
inositide lipids, the actomyosin network, the microtubule 

network vacuolar ATPases, and calcium signals, have also 
been reported to play a role in the process of endosomal 
maturation (Al Soraj et al. 2012; Nguyen and Yates 2021).

Once released into the cytoplasm, exogenous RNA mol-
ecules can undergo active transport mediated by molecular 
motor proteins, such as kinesin or dynein, along the micro-
tubule network (Gagnon et al. 2013). These motor proteins 
hydrolyze ATP to provide energy and facilitate the move-
ment specific RNA molecules or RNA carrier complexes 
towards specific subcellular regions, including the nucleus, 
specific organelles, or sites of translation, guided by specific 
signal sequences or localization elements. Another category 
of proteins that play a crucial role in cytoplasmic transport 
are RNA-binding proteins, which recognize specific RNA 
sequence motifs or structural elements. These can act as 
adaptors, linking RNA cargos to motor proteins or micro-
tubules, or function as regulators, modulating the transport 
efficiency or specificity of RNAs (Girardi et al. 2021).

Two transmembrane proteins, SID-1 and SID-2, play 
pivotal roles in facilitating the uptake and dissemination of 
double strand RNA (dsRNA) to induce systemic RNAi as 
first demonstrated in C. elegans (Hunter et al. 2006). SID-1 
functions as a bidirectional channel that transports dsRNA 
across cell membranes, while SID-2 likely acts as a recep-
tor, particularly on the luminal membrane, facilitating the 
uptake of dsRNA from the extracellular matrix. In humans, 
it appears that there are two homologs of SID-1, namely 
SIDT1 and SIDT2, but none for SID-2. Human SIDT1 aids 
in small interfering RNA (siRNA) uptake and enhances gene 
silencing effectiveness (Duxbury et al. 2005). Recently, it 
was also discovered that SIDT1 mediates dietary miRNA 
absorption in the mammalian stomach (Chen et al. 2021). 
SIDT2, which predominantly localizes to lysosomes and in 
part to endo-lysosomes, can transport extracellular dsRNA 
into the cytosol for innate immune recognition (Nguyen 
et al. 2017). SIDT2 also directly transports RNA into lys-
osomes for degradation in an unexpected ATP-dependent 
manner, suggesting it may not solely function as a channel 
(Aizawa et al. 2016).

Cellular defense strategy against exogenous 
RNA

RNAi‑mediated immune reaction

Besides endo-lysosomal degradation, the intrinsic RNAi 
pathway also works as a sequence-specific RNA-mediated 
silencing system against invasive exogenous RNA (Fig. 2A). 
Wingard (1928) observed that only the initially infected 
tobacco leaves developed tobacco ringspot virus (TobRV) 
disease, while the other leaves were asymptomatic and 
resistant to secondary infection, which was the first evidence 
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for an antiviral role of RNAi in plants. Its antiviral effect was 
subsequently confirmed in other plants (Hamilton and Baul-
combe 1999), invertebrates (Parameswaran et al. 2010) and 
mammals (Berkhout 2018). RNA/DNA-Virus and micro-
organism-derived dsRNA (by RNA-dependent-templated 
RNA polymerization or converging bidirectional transcrip-
tion) are identified by Dicer endonucleases of the host and 
sliced into ~ 25 (in plants) or ~ 21–23 (in most animals) 
nucleotides, which are then loaded into the RNA-induced 
silencing complex (RISC) along with Argonaute family 
proteins (e.g., Ago2 in Drosophila melanogaster, murines 
and humans, RDE-1 in C. elegans) (Chen and Hur 2022; 
Hutvagner and Simard 2008; Zhao and Guo 2022). The 
sense or “passenger” strand RNA is released into the cyto-
plasm and degraded, while the anti-sense or “guide” strand 
is retained, matures in the RISC, and eventually targets the 
exogenous RNA, which is the genome of the invasive RNA 
virus (Schuster et al. 2019).

A growing number of studies have reported that a vari-
ety of pathogenic viruses, including IAV (Li et al. 2016a), 
Zika virus (Xu et al. 2019) and Enterovirus A71 (Qiu et al. 
2017), induce siRNA production depending on the RNAi 
antiviral pathway in mammals. In a recent study, labora-
tory mice were infected with a viral suppressor of RNAi-
deficient Nodamura virus following which a large amount 

of stable virus-derived siRNA was detected in muscle tissue 
and exosomes (Zhang et al. 2022). In subsequent protec-
tion experiments, it was shown that the virus-derived siRNA 
carried by the mice exosomes had the function of cleaving 
homologous viral RNAs (Zhang et al. 2022). In addition, 
Zhang et al. (2022) showed that targeted delivery of antivi-
ral siRNA via engineered extracellular vesicles effectively 
alleviates microcephaly in mice caused by Zika viral infec-
tion, further demonstrating that RNAi can promote systemic 
immune responses to defend against viral invasion.

It is widely recognized that in nature, the potent type 
I-interferon (IFN-I) response is the main innate antiviral 
pathway in mammals, whereas RNAi seems to be an active 
antiviral system in pluripotent cells (e.g., undifferentiated 
stem cells) in which the IFN system is inactive (Petitjean 
et al. 2018; Schuster et al. 2019). Evidence shows that in 
mouse embryonic fibroblasts (MEFs) deficient in the sign-
aling molecule mitochondrial antiviral signaling protein 
(MAVS) or interferon receptor (IFNAR1), though defec-
tive in sensing non-self RNA and responding to IFN, long 
dsRNA can nevertheless induce sequence-specific gene 
silencing in a RNAi-dependent manner (Maillard et  al. 
2016). In another study, depletion of IFN-I in mice led to 
small-RNA mediated silencing that triggered effective sup-
pression of IAV infection, resulting in a 5-log attenuation 

Fig. 2   Schematic representation of cellular defense systems. A 
Canonical RNAi pathway, Dicer recognizes the exogenous dsRNA 
and slices it into small siRNA, which is then delivered to the RISC 
combined with the Ago-family proteins. Finally, the anti-sense 
siRNA targets and degrades the homologous sequences via base-

pairing. B Different Toll-like receptors (TLRs) that recognize the 
exogenous RNA within the endosome. Exogenous RNA triggers the 
downstream signaling pathway including the production of Type-I 
Interferons or cellular inflammatory responses. IRFs the interferon-
regulatory factor family of transcription factors
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in depleted strains (Benitez et al. 2015). These data support 
the assertion that RNAi can be used as an effective defensive 
system in mammals in the absence of an IFN response.

Innate immune reactions

The innate immune system is generally considered to be 
sequence non-specific and able to identify exogenous RNAs 
via pattern-recognition receptors (PRRs) that can recog-
nize both conservative pathogen-associated molecular pat-
terns (PAMPs) and damage-associated molecular patterns 
(DAMPs) from a wide range of pathogens. PRRs produce 
inflammatory cytokines or interferon to mediate downstream 
cellular responses, such as programmed cell death (Carty 
et al. 2021; Takeuchi and Akira 2010). PRRs, currently 
known to be activated by RNA virus invasion, are strate-
gically located either intracellularly, on the membrane, or 
in secretions. All these localizations have been recognized 
as crucial for early viral detection and immune response 
(Jensen and Thomsen 2012).

A subset of toll-like receptors (TLRs), which are a typical 
class of PRRs, play a critical role in the early recognition of 
nucleic acids both in host cells and in exogenous invaders 
(Lind et al. 2022). TLRs are type I transmembrane proteins 
characterized by an ectodomain with leucine-rich repeats, 
a transmembrane region, and a cytoplasmic tail that con-
tains a conserved region called the Toll/IL-1 receptor (TIR) 
domain (Fig. 2B) (Asami and Shimizu 2021). The function 
of TLRs in defense usually depends on the MyD88 pathway, 
resulting in the production of inflammatory cytokines, and a 
MyD88-independent pathway associated with the stimula-
tion of IFN-β (Kawai and Akira 2011). Four widely known 
mammalian TLRs are thought to be associated with recogni-
tion of foreign RNA, and four are normally located on endo-
somal membranes. Studies on the evolution of TLRs have 
revealed species-specific variations in TLR types among 11 
mammalian species (Bagheri and Zahmatkesh 2018; Zhang 
et al. 2016). Notably, while TLR3 exhibits a more wide-
spread presence across all 11 species, Oryctolagus cunicu-
lus (rabbit) lacks TLR7 and TLR8, and only Mus musculus 
(mouse), Rattus norvegicus (rat), and Tupaia belangeri chin-
ensis (Chinese tree shrews) possess TLR13. TLR3 recog-
nizes double-stranded RNA, TLR7 and TLR8 can recognize 
extremely short fragments of RNAs, even single nucleotides 
in some cases, and TLR13 specializes in the recognition of 
fragments of single-stranded RNA (Reniewicz et al. 2016; 
Shibata et al. 2016). This specificity not only enables broad 
recognition by virtue of the ubiquity of nucleic acids but also 
introduces the possibility of an overactive immune response 
or even an autoinflammatory reaction (Lind et al. 2022). 
Therefore, an additional balancing mechanism that involves 
exporting excessive RNAs from endosomes to the cytosol is 
utilized to regulate the concentration of endosomal RNAs. 

A typical example is SIDT1 and SIDT2, which are present 
in the endosome of mice and facilitate the export dsRNA 
from endosomes to reduce the TLR3 response (Nguyen et al. 
2017).

Another class of PRRs is RIG-I like receptors (RLRs) 
that belong to RNA helicases, which can recognize and bind 
the nonself signature of viral RNAs (Hur 2019). RLRs usu-
ally have three components, namely retinoic acid inducible 
gene I (RIG-I), melanoma differentiation associated gene 
5 (MDA5), and laboratory of genetics and physiology 2 
(LGP2) (Fig. 3) (Rehwinkel and Gack 2020). RIG-I and 
MDA5 can recognize the dsRNA by their typical helicase 
domains and the C-terminal domain (Wu and Hur 2015). 
RIG-I primely recognizes the short dsRNA with its 5’ 
triphosphate (5’ppp) or 5’ diphosphate (5’pp) (Chen et al. 
2017), while MDA5 can bind to long dsRNA (longer than 
2000 nt) (Kato et al. 2008).

In addition to the typical PRRs, some other interferon-
inducible RNA sensors also contribute to the innate immune 
reactions. Protein kinase R (PKR) is a dsRNA-dependent 
protein kinase consisting of two tandem repeats of dsRNA-
binding domains (dsRBDs) and a kinase domain. Once 
dsRBD binds to one face of dsRNA through phosphate and 
ribose backbones of two adjacent minor grooves, it converts 
the PKR to an active state. This leads to the global shutdown 
of protein synthesis via phosphorylates eIF2α, an essential 
cap-dependent translation initiation factor, and the inhibi-
tion of cellular activity and viral replication (Fig. 3) (Pfaller 
et al. 2011). Additionally, the OASes family of enzymes can 
synthesize 2’-5’-phosphodiester-linked oligoadenylates by 
binding to dsRNA, leading to the cleavage of exogenous 
dsRNA (Fig. 3) (Nogimori et al. 2019).

Some helicases in superfamily-2 are also known to be 
exogenous RNA sensors and induce antiviral responses and 
inflammatory signaling pathways. For example, DDX60 
is thought to play a role in the defense against exogenous 
RNA either by assisting RLRs or by degrading them directly. 
DHX15, DHX33 and the complex of DDX1-DDX21-
DHX36 were also reported to contribute to innate immune 
reactions mediated by exogenous RNA (Leitao et al. 2015). 
In addition, recent studies in humans identified a novel 
nuclear RNA sensor, namely scaffold attachment factor A 
(SAFA), which can recognize dsRNA derived from virus 
replication. When SAFA senses dsRNA, it oligomerizes and 
induces IFN-β production by interacting with DNA topoi-
somerase I (TOPI) (Cao et al. 2019; Li et al. 2021).

Implication of improving RNA interference

Throughout the process of intracellular transport, exog-
enous RNA is subjected to dynamic changes in its micro-
environment, including typical Rab GTPase conversions, 
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sorting into intraluminal vesicles, acidification, and ulti-
mately, fusion with lysosomes for its degradation (Borch-
ers et al. 2021; Sardana and Emr 2021). Therefore, how to 
effectively deliver and release functional exogenous RNA 
to the intended target has become the biggest obstacle for 
the application of RNA interference in basic research and 
therapeutics.

Many species can take up dsRNA from their food and 
achieve efficient RNAi throughout the body. Examples of 
feeding-induced RNAi have been reported in C. elegans, 
Penaeus orientalis, different ciliate species including Para-
mecium tetraurelia, Blepharisma japonicum and Spiro-
stomum minus, and various insects (Carradec et al. 2015; 
Hunter et al. 2006; Itsathitphaisarn et al. 2017; Sobiera-
jska et al. 2011; Zhang et al. 2023). Although this form of 
RNAi is efficient, its effectiveness can vary significantly 
even among closely related species, with multiple factors 
potentially contributing to these differences (Zhu and Palli 
2020). Previous studies have highlighted the crucial role of 
the dsRNA transport-related proteins SID-1 and SID-2 in 
regulating the efficiency of RNAi in C. elegans, Penaeus 

orientalis, and D. melanogaster (Feinberg and Hunter 2003; 
Labreuche et al. 2010; Shih and Hunter 2011). In addition, 
factors such as dsRNA stability, endosome capture, core 
RNAi machinery expression level, and RNAi dissemination 
efficiency have substantial impacts on the effectiveness of 
RNAi in different organisms (Alshaer et al. 2021; Zhu and 
Palli 2020). Therefore, further research is needed to eluci-
date this phenomenon and advance RNAi application.

Previous research on improving the efficiency of RNAi 
has largely focused on modifying RNA delivery systems 
to facilitate endosomal escape. This includes the possibil-
ity of using macropinocytosis as a means to deliver RNAi 
molecules, such as siRNA or short hairpin RNA, into cells 
to silence specific genes (Cavalli et al. 2017; Paunovska 
et al. 2022). One approach to enhance the uptake of RNAi 
molecules via macropinocytosis is to engineer RNAi thera-
peutics with macropinocytosis-inducing agents, such as 
growth factors or peptides. This method has been shown to 
improve cellular uptake and RNAi-mediated gene silenc-
ing efficiency, thereby enhancing the therapeutic potential 
of RNAi (Wang et al. 2010). Other studies have focused on 

Fig. 3   Schematic representation of cellular defense systems, focus-
ing on various exogenous RNA sensors in the cytoplasm. RIG-1 and 
MDA5 belong to the RIG-I-like receptors (RLRs) family. These two 
RLRs recognize most exogenous RNAs via their CTD and helicase 
domain, then activate the MAVS, which leads to the downstream pro-
duction of the IFN-I or NF-κB pathway. Protein kinase R (PKR) is a 

dsRNA-dependent protein kinase that can facilitate the NF-κB path-
way and also might inhibit the cap-dependent translation by phospho-
rylating eIF2α, an elongation factor of translation. OASes can bind 
the exogenous RNA and leading to the production of 2-5A, an activa-
tor of RNase L, which degrades the exogenous RNA
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modulating signaling pathways associated with macropino-
cytosis to promote its efficiency. Manipulating key signaling 
molecules, such as Ras, Rac or PKC, can influence macropi-
nocytic activity (Sahay et al. 2010). It has been shown that 
increased cellular uptake of RNAi molecules, and improved 
gene silencing effects, can be achieved by utilizing small 
molecules or genetic approaches to enhance macropinocyto-
sis-inducing signaling pathways (Hu et al. 2022; Sahay et al. 
2008; Xiao et al. 2021).

Recent research has also highlighted the potential of mod-
ifying the cytoplasmic transport process to enhance RNAi 
efficiency, mainly by developing improved RNA carrier 
systems or by manipulating RNA molecules or regulatory 
factors (Vocelle et al. 2020). The carrier systems often uti-
lize lipid-based nanoparticles, polymers, or non-viral vectors 
to protect and efficiently deliver RNAi molecules to target 
cells. Modifications of these carriers, such as adjusting par-
ticle size, materials (e.g., lipid, polymeric and inorganic), 
chemical modifications, surface functionalization, or the 
incorporation of targeting ligands, can improve delivery to 
desired cell types or subcellular compartments (Zylberberg 
et al. 2017). Regulatory factors have also been targeted to 
enhance RNAi efficiency by facilitating the cytoplasmic 
localization and stability of RNAi molecules (Mettlen et al. 
2018).

Another proposed mechanism involves the pH-sensitive 
disruption of endosomal membranes by exogenous RNA 
carriers. pH-responsive components, such as protonatable 
amino groups or acid-labile linkages, undergo conforma-
tional changes or protonation, leading to membrane destabi-
lization and the subsequent release of the RNA payload. For 
example, pH-sensitive peptides, such as the histidine-rich 
fusogenic peptides, can undergo conformational changes in 
response to low pH, promoting membrane fusion and endo-
somal escape. Certain membrane-disrupting agents includ-
ing cationic detergents (e.g., Triton X-100), pore-forming 
peptides (e.g., melittin), or lysosomotropic agents (e.g., chlo-
roquine) are also thought to facilitate endosomal escape of 
exogenous RNA (Regen 2020). These agents can destabilize 
the endosomal membrane leading to leakage or rupture and 
the subsequent release of the encapsulated RNA cargo. Some 
viral proteins, such as influenza virus hemagglutinin pro-
tein, also possess membrane-disrupting properties and thus 
have been utilized for membrane fusion and RNA release 
(Benton et al. 2020; Blijleven et al. 2016). In addition, cal-
cium-dependent fusogenic liposomes or calcium-responsive 
polymers can undergo structural changes in response to ele-
vated calcium levels within endosomes, which can trigger 
membrane fusion events resulting in endosomal escape of 
RNA molecules (Gu et al. 2020). However, a large degree 
of endosome capture is still unavoidable. Currently, most 
gene therapies focus on the combination of small molecule 
drugs and gene carriers, which has shown good efficacy. 

The majority of the small-molecule drugs used in recent 
research are cationic amphiphilic drugs (CADs), which are 
relatively lipophilic in their unprotonated form, allowing 
them to penetrate lipid membranes with a distinct pharmaco-
logical activity. However, due to their amphiphilic and weak 
basic characteristics, they tend to accumulate in substantial 
proportions in acidic compartments (Kornhuber et al. 2011). 
The accumulated CADs are subsequently protonated in acid 
lysosomes, thereby restricting diffusion back into the cyto-
plasm and inducing them to insert hydrophobic fragments 
into the lipid membrane, releasing the membrane-attached 
acid sphingomyelinase (ASM). Eventually, the decrease of 
ASM-mediated sphingomyelin hydrolysis leads to the accu-
mulation of sphingomyelin and cholesterol, inducing lysoso-
mal swelling and instant membrane permeabilization (Joris 
et al. 2018; Petersen et al. 2013).

Studies have demonstrated that co-administration of chlo-
roquine and cholesterol-conjugated siRNA could increase 
the efficiency of siRNA knockdown and diminish the effec-
tive siRNA concentration both in cultured cells and tumor 
spheroids (e.g., Du Rietz et al. 2020). In a few situations, 
siramesine can improve knock-down efficiency but is not as 
effective as chloroquine owing to differences in compart-
ments targeting small molecules (Chernikov et al. 2019). 
In addition, various adjuvants can also be used to enhance 
the endo-lysosome escape of nucleotides with noncarri-
ers. These include: carvedilol, a β-blocker; ketotifen, an 
asthma medication; loperamide, an anti-peristaltic agent; 
nortriptyline, an antidepressant; and desloratadine, which 
can form pores in the lysosome membrane with a diameter 
of 10–40 nm and release dextran with a maximum molecu-
lar weight of 150 KDa (Joris et al. 2018; Shaabani et al. 
2021). Furthermore, up to 96 CADs have been shown to 
boost endosomal escape, which can raise the efficacy of gene 
knockdown by 3–6 times in various cancer cells. Hit-rates of 
up to 13.7% in the screening of CADs have shown that their 
effectiveness depends on their physical and chemical prop-
erties rather than intermolecular interactions (Van de Vyver 
et al. 2020). In general, CADs have preferences for vari-
ous customized nanocarriers, cargos, cell types, and even 
cell compartments, all of which should therefore be con-
sidered prior to their application. Furthermore, a previous 
study demonstrated that combining two types of CADs and 
administering them in a phased manner can result in an addi-
tive effect of endosome-lysosome escape (Joris et al. 2018).

Concluding remarks

RNA interference is an adaptable and versatile genetic 
manipulation technique that can be used in reverse genetic 
studies, specific gene repression, and in targeted thera-
pies. However, its efficiency in several species remains 
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problematic due to factors such as dsRNA instability, 
incomplete dsRNA internalization, defects in the core RNAi 
machinery, limited systemic dissemination within the body, 
and multiple functions of various categories of RNAs in dif-
ferent organisms (Cooper et al. 2019). dsRNA instability is 
attributed to RNases and variations in intracellular pH levels. 
Incomplete dsRNA internalization is also a complex issue 
that may result from insufficient endosomal escape, RNAi 
repressors, or possibly different internalization mechanisms. 
In addition, the composition, expression, regulation, and 
function of the core RNAi machinery genes vary consider-
ably among different species, having significant effects on 
RNAi efficiency.

Despite recent successes in modifying the RNAi delivery 
system and enhancing endosomal escape in laboratory stud-
ies, targeted delivery to specific cells/tissues and the sys-
temic expansion of RNAi still poses significant challenges 
in the context of therapy. It is crucial to avoid both renal and 
reticuloendothelial clearance, while simultaneously enhanc-
ing extravasation (Traber and Yu 2023). Consequently, fur-
ther development of metabolically stable RNAi triggering 
factors and coupling ligands is necessary to ensure efficient 
RNAi therapy. Additionally, careful consideration should 
be given to the safety of RNAi delivery carriers and the 
long-term impact of RNAi on biological effects. Some of 
these issues may benefit from understanding synergistically 
with complex biological pathways such as those responsi-
ble for intracellular cargo sorting and trafficking following 
endocytosis.

In this review, we summarized the recent findings 
reported in the accumulating literature covering the com-
plete cellular response to exogenous RNA, including cellular 
entry, intracellular transportation, RNA-mediated silenc-
ing, and immune-inflammatory reactions. Based on these 
new discoveries, we propose potential strategies that may 
enhance the efficiency of RNA interference. Future studies 
should focus on a systematic understanding of the routes and 
fates of different forms of exogenous RNA, which will shed 
light on more efficient RNA delivery approaches for genetic 
manipulation and therapeutic applications in humans and 
other organisms.
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