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Abstract
The application of chondroitinase requires consideration of the complex microenvironment of the target. Our previous 
research reported a marine-derived sodium dodecyl sulfate (SDS)-resistant chondroitinase VhChlABC. This study further 
investigated the mechanism of VhChlABC resistance to SDS. Focusing on the hydrophobic cluster on its strong hydrophilic 
surface, it was found that the reduction of hydrophobicity of surface residues  Ala181,  Met182,  Met183,  Ala184,  Val185, and  Ile305 
significantly reduced the SDS resistance and stability. Molecular dynamics (MD) simulation and molecular docking analysis 
showed that I305G had more conformational flexibility around residue 305 than wild type (WT), which was more conducive 
to SDS insertion and binding. The affinity of A181G, M182A, M183A, V185A and I305G to SDS was significantly higher 
than that of WT. In conclusion, the surface hydrophobic microenvironment composed of six residues was the structural 
basis for SDS resistance. This feature could prevent the binding of SDS and the destruction of hydrophobic packaging by 
increasing the rigid conformation of protein and reducing the binding force of SDS-protein. The study provides a new idea 
for the rational design of SDS-resistant proteins and may further promote chondroitinase research in the targeted therapy of 
lung diseases under the pressure of pulmonary surfactant.
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Introduction

Chondroitin sulfate (CS) is an important member of sul-
fated glycosaminoglycans (GAGs), and its polysaccharide 
chain is formed by repeated disaccharide units composed of 

glucuronic acid (GlcA) and N-acetyl-galactosamine (Gal-
NAc) connected by β-1,4 glycoside bonds (Abdallah et al. 
2020; Mishra and Ganguli 2021). CS is widely present in the 
extracellular matrix of vertebrates in the form of CS proteo-
glycans (CSPGs), especially in cartilage, ligaments, cornea, 
skin and other tissues (Morla 2019). CS plays an important 
role in a variety of biological processes, including cartilage 
repair and regeneration, as an antioxidant and anti-inflamma-
tory molecule, as well as in the regulation of various patho-
logical conditions such as osteoarthritis and nervous system 
diseases and physiological processes such as aging (Agiba 
et al. 2018; Collin et al. 2017; Djerbal et al. 2017; Ishimaru 
et al. 2014; Mizuguchi et al. 2003; Mou et al. 2018; Nandini 
and Sugahara 2006; Sato et al. 2008; Sugahara and Mikami 
2007; Volpi 2011). Stromal and cell surface CSPGs play 
important roles in tumor growth, vascularization and metas-
tasis (Khan et al. 2020). The pathogenesis of many tumors, 
including melanoma, triple-negative breast cancer, glioblas-
toma, ovarian carcinoma, neuroblastoma, osteosarcoma, and 
chondrosarcoma, have been confirmed to be closely related 
to the overexpression of CSPGs (Ilieva et al. 2017).
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Chondroitinase can degrade CS and its biological activity 
is due to its ability to act on CSPGs (Kasinathan et al. 2016). 
CSPGs deposition in a variety of pathological conditions, 
including spinal cord injury, citreous adhesion, and cancer, 
has attracted more and more attention for CS-targeted ther-
apy. Studies have shown that chondroitinase can remove the 
glial scar formed in the spinal primary injury site and restore 
the regeneration function of axons (Bradbury et al. 2002; 
Moon et al. 2001). Enzyme-assisted vitrectomy can greatly 
reduce the chance of retinal damage during eye surgery 
(Gandorfer 2008; Staubach et al. 2004). In the treatment 
of oncolytic virus mediated astrocytoma, chondroitinase 
increases the spread and infection of virus in cancer cells 
by removing tumor CSPGs (Dmitrieva et al. 2011). Cur-
rently, the application of chondroitinase in tumor therapy is 
still restricted by many factors, including the effectiveness 
and stability of the enzyme in specific microenvironments 
in vivo. Drugs for lung tumors are bound to face pressure 
from lung surfactants, the detergent-like materials that could 
produce a sodium dodecyl sulfate (SDS)-like stimulus (Dan 
et al. 2009; Manganelli et al. 1999). Perhaps, the lack of 
surfactant-resistant enzymes is one of the essential reasons 
for the lack of research on targeted lung tumor therapy com-
bined with chondroitinase.

Although considerable progress had been made in GAG 
lyases with novel structures and functions, there were few 
reports on SDS-resistant GAG-degrading enzyme, and the 
understanding of its mechanisms was almost nonexistent. 
The chondroitinase B of PL6 family from marine bacterium 
Microbulbifer sp. ALW1 had been found to be surfactant-
stable, but the mechanism remained unknown (Mou et al. 
2022). In addition, almost all members of the PL6, PL8, 
PL16, PL30 and PL33 families in the CAZY database were 
sensitive to SDS. The activities of enCSase from Photobac-
terium sp. QA16, Vpa_0049 from Vibrio sp. QY108, and 
ChSase ABC from Acinetobacter sp. C26 were almost com-
pletely inhibited by SDS with a concentrations of less than 
5 mmol/L (Zhang et al. 2020a, b; Zhu et al. 2017). Lipase 
is an important model for studying detergent tolerance. A 
systematic mutagenesis study for Bacillus subtilis lipase A 
had revealed that surface remodeling was an effective strat-
egy to optimize the stability of the enzyme in detergents, 
including SDS, CTAB, Tween 80, and sulfobetaine; how-
ever, the rationale behind the increased tolerance obtained 
with amino acid substitutions and its applicability to other 
enzyme modifications were unclear (Fulton et al. 2015).

In a previous study, we identified an SDS-resistant chon-
droitinase VhChlABC from the marine bacterium Vibrio 
hyugaensis LWW-1, which retained more than 50% activity 
at SDS concentrations up to 10% (w/v) (Su et al. 2021). 
The enclosed study further explored the mechanism of 
VhChlABC tolerance to SDS, and revealed that the hydro-
phobic microenvironment on the surface of VhChlABC 

was the key structural basis. This is the first report on the 
mechanism of GAG-degrading enzyme resistance to SDS. It 
provides a new strategy for rational design of SDS-resistant 
proteins, which is beneficial to obtain the phenotype more 
conveniently and efficiently. Additionally, the study may 
advance the research process of chondroitinase in the treat-
ment of lung diseases, which might be constrained by the 
abundance of surfactants in the lung microenvironment.

Materials and methods

Hydrophilic and hydrophobic analysis of VhChlABC

The online tool ProtScale (https:// web. expasy. org/ prots 
cale/) was used to map the hydrophilicity and hydrophobic-
ity of the protein. The amino acid scale was selected with 
the default option “Hphob./Kyte & Doolittle”, the sliding 
window size was set to 9, and the linear weighted model was 
selected. The positive values are positively correlated with 
the hydrophobicity of amino acids. The negative values are 
negatively correlated with the hydrophilicity of amino acids. 
Additionally, the hydrophilic and hydrophobic surfaces of 
the VhChlABC were visualized by PyMOL.

Site‑directed mutagenesis of VhChlABC

This study focused on the hydrophobic cluster consisting 
of six amino acids on the surface of VhChlABC. The site-
directed mutation strategy was performed to investigate the 
effect of the surface hydrophobic cluster on SDS resist-
ance. The mutant expression vector was constructed by the 
Gibson assembly method on the basis of plasmid pET-28a 
(+)-VhChlABC (WT) (Su et al. 2021), using the Clon-
Express MultiS One Step Cloning Kit (Vazyme, Nanjing, 
China). The mutant gene was ligated into BglII and XhoI 
sites of the pET-28a (+) expression vector and verified by 
DNA sequencing. All primers (Supplementary Table S1) 
used in this work were ordered from Tsingke Biotech Co., 
Ltd. (Qingdao, China).

Expression, purification and activity assay 
of VhChlABC and its mutants

The expression and purification of VhChlABC and its 
mutants and the  A232 enzyme activity assay method were 
performed as previously described (Su et al. 2021).

Biochemical characterization of VhChlABC and its 
mutants

Biochemical characterization was determined using CS-A 
as the substrate. The  A232 method was performed for this 

https://web.expasy.org/protscale/
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test. The detection of optimum temperature, thermostability, 
optimum pH, and pH stability of VhChlABC and its mutants 
were determined as previously described (Su et al. 2021).

Effects of SDS on VhChlABC and its mutants were 
examined by measuring the activity in 20 mmol/L phosphate 
buffer (pH 7.0) in the presence of different concentrations 
of SDS. To examine the effect of SDS on the stability of the 
enzymes, the residual activity of VhChlABC/mutants was 
measured after incubation with 0.1% (w/v) SDS at 0 °C for 
1 h.

Homology modeling, MD simulation and molecular 
docking analysis

SWISS-MODEL server (https:// swiss model. expasy. org/ 
inter active) was used to construct a structural model of 
VhChlABC using chondroitin sulfate lyase abc (PDB ID: 
2q1f.1.A) from Bacteroides thetaiotaomicron wal2926 as the 
template (Waterhouse et al. 2018). The quality check of the 
homology protein models was carried out using Verify 3D. 
PyMOL was used to create the structure of A181G, M182A, 
M183A, A184G, V185A and I305G mutated from the struc-
ture of VhChlABC. The structure of SDS was obtained from 
PubChem (CID: 3423265), and AutoDock (Trott and Olson 
2010) was used to dock this ligand into VhChlABC and its 
mutants (Fischer and Smieško 2021). Molecular dynamics 
simulations were performed using the GROMACS 2020.6 
package, the protein system used Amberff99SB-ildn force 
field, and the ligands used the general amber force field 
(GAFF) (Abraham et al. 2015). The TIP3P water model 
with an edge of ~ 10 Å was used to solvate the complex sys-
tem in a cubic box. Sodium ions were added to neutralize 
the charge. The long-range electrostatic interactions were 
treated using the Particle Mesh Ewald (PME) method with a 
1.0 nm cutoff. Minimization was performed by 5000 steps of 
steepest-descent minimization procedure. Subsequently, the 
NVT (constant number of atoms, volume, and temperature) 
and NPT (constant number of atoms, pressure, and tempera-
ture) ensemble were used to carry out a 100 ps restricted 
simulation. Finally, follow-up analysis was performed using 
the trajectory between 40 and 50 ns. The maximum cluster 
of structures in the trajectory between 40 and 50 ns of simu-
lations was used for structure analysis. VMD and PyMOL 
was used for structural visualization and structural analysis.

Molecular mechanics Poisson–Boltzmann surface 
area (MM‑PBSA) method

The GMX MMPBSA was used to calculate the binding affin-
ity of SDS to WT and mutated proteins (Chen et al. 2022; 
Valdés-Tresanco et al. 2021). For each system, the binding 
free energy (ΔGbind) was extracted from the last 10 ns of 
the MD trajectory. In the MM-PBSA scheme, the ΔGbind 

was computed according to the reported method (Chen et al. 
2015).

Statistical analysis

Statistical analysis was performed using the two-tailed 
unpaired Student’s t test. * indicates p ≤ 0.05; ** indicates 
p ≤ 0.01.

Results and discussion

Hydrophilic and hydrophobic characteristics 
of VhChlABC

The hydrophilic/hydrophobic map of VhChlABC showed 
that the number of amino acids with a hydrophobic index 
less than zero was significantly more than those with a 
hydrophobic index greater than zero, indicating that the 
overall hydrophilicity of VhChlABC was strong (Fig. 1A). 
Moreover, the large number of strong hydrophilic amino 
acids on the protein surface formed a strong hydrophilic sur-
face layer of VhChlABC (Fig. 1B). The visualization of the 
hydrophilic and hydrophobic surface by PyMOL (PyMOL 
Molecular Graphics System, ver. 2.0, Schrödinger, LLC.) 
also showed the typical characteristics of the strong hydro-
philic surface of VhChlABC (Fig. 1C). As reported, SDS 
consists of a hydrophilic polar head and a hydrophobic non-
polar tail, in which the hydrophobic part can be inserted into 
the hydrophobic interior of the protein to destroy the spatial 
structure of the protein and cause it to be denatured (Khan 
et al. 2019; Zaidi et al. 2014). Although there is no abso-
lute correlation between hydrophobicity and stability, the 
regular arrangement of non-polar amino acids in the protein 
sphere is one of the reasons for stability. Improving hydro-
phobic core packing is one of the practical ways to stabilize 
proteins (Tanaka et al. 2005; Tych et al. 2016). Accord-
ingly, we hypothesized that the strong hydrophilic surface 
of VhChlABC may better protect the internal hydrophobic 
center, thus playing an important role in the stability of its 
overall structure, including a wide pH tolerance range, tem-
perature stability, and strong SDS resistance (Su et al. 2021).

As described above, SDS can bind to proteins by pre-
dominantly hydrophobic interactions, causing unfolding of 
the tertiary structure (Zaidi et al. 2014). For proteins with 
a strong hydrophilic protective layer, a hydrophobic cluster 
on the protein surface may be a breakthrough for SDS to 
“destroy” the protein. It was worth noting that there was a 
strong hydrophobic cluster on the surface of VhChlABC, 
which was mainly composed of six hydrophobic amino 
acids:  Ala181,  Met182,  Met183,  Ala184,  Val185, and  Ile305 
(Fig. 1C). Obviously, SDS did not use this hydrophobic 

https://swissmodel.expasy.org/interactive
https://swissmodel.expasy.org/interactive
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cluster as a “break point”, suggesting that this cluster may 
have special structural features that prevent SDS binding.

Acquisition of site‑directed mutants of VhChlABC

In order to further explore the relationship between SDS 
resistance and the hydrophobic cluster on the surface of 
VhChlABC, the six amino acids forming the hydrophobic 
cluster were respectively mutated to reduce the hydropho-
bicity of this part. The 16 mutants designed were shown in 
Table 1.

Under the same conditions as VhChlABC (Su et  al. 
2021), the mutant proteins were expressed in soluble form 
in the pET-28a (+)/E.coli BL21(DE3) system and purified 
by nickel affinity chromatography. Mutant I305A was not 
expressed after IPTG induction (there was no obvious band 
of corresponding size in the crude enzyme solution; data 

not shown). The reason for the lack of soluble expression 
was unclear, so this mutant was not studied further in this 
research. As shown in Supplementary Fig. S1, the target 
proteins with a molecular weight of about 110 kDa were 
identified.

Effects of SDS on activity and stability of VhChlABC 
and mutants

The specific activity of each mutant under optimal reac-
tion conditions was first determined as previously reported 
(Su et al. 2021). Although the surface hydrophobic cluster 
was away from the catalytic center (Fig. 1C), it still had a 
certain effect on the activity. As shown in Fig. 2, mutants 
A181S, M182G, M182S, M183G, M183S, A184S, V185G, 
V185S and I305S showed a significant decrease in activity. 
We further investigated the effects of SDS on the activity 

Fig. 1  Hydrophilicity/hydrophobicity analysis of VhChlABC. A 
Hydrophilic/hydrophobic map. The vertical axis represents the hydro-
phobic fraction, and the horizontal axis represents the amino acid res-
idues at the corresponding positions. The online tool ProtScale was 
used to map the hydrophilicity and hydrophobicity of VhChlABC as 
described in the “Materials and Methods”. B 3D-distribution map 
of strongly hydrophilic/hydrophobic amino acids. Amino acids with 
hydrophobicity index higher than 1 and less than − 1.5 were defined 

as strongly hydrophobic (red) and strongly hydrophilic (green), 
respectively. C The hydrophilic/hydrophobic surface, the surface 
hydrophobic cluster and the critical catalytic residues. PyMOL 
was used for visualization of hydrophilic/hydrophobic surface of 
VhChlABC. The darker the red, the more hydrophobic the amino 
acid. The six amino acids that form the hydrophobic cluster were 
represented as spheres. The critical catalytic residues were shown as 
mesh
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and stability of mutants A181G, M182A, M183A, A184G, 
V185A and I305G, whose specific activity was not sig-
nificantly reduced compared with the wild-type (WT) 
enzyme. The effect of different concentrations of SDS on 
enzyme activity was elucidated. For all conditions, WT 
showed higher activity than that of the mutants (Fig. 3A). 

Apparently, I305G was completely inactivated in the pres-
ence of 0.1% (w/v) SDS (Fig. 3A). For the SDS stability 
study, all enzymes were incubated in the presence of 0.1% 
(w/v) SDS for 1 h, and the remaining activity was meas-
ured. The result indicated that the SDS stability of all the 
mutants was significantly lower than that of WT (Fig. 3B). 
The hydrophobic pocket formed by these hydrophobic amino 
acids was important for the SDS stability of VhChlABC.

Molecular dynamics (MD) simulation and molecular 
docking

To shed light on the mechanisms responsible for differences 
in SDS resistance, MD simulations were carried out on WT 
and mutants A181G, M182A, M183A, A184G, V185A and 
I305G. Supplementary Fig. S2 showed all root-mean-square 
deviation (RMSD) reached a stationary shape after 40 ns. 
The analysis of the root-mean-square fluctuation (RMSF, 
as shown in Fig. 4) showed that the fluctuation trend of 
mutants was roughly the same as that of WT. There was no 
obvious fluctuation near the corresponding mutation sites 
in mutants A181G, M182A, M183A, A184G and V185A 
(Fig. 4A–E). The conversion of isoleucine to glycine did 
not cause significant fluctuations in the RMSF value of the 

Table 1  Mutation sites and mutants of VhChlABC

The expression vectors of all mutants were listed in Table S2
A alanine (Ala), G glycine (Gly), S serine (Ser), M methionine (Met), 
V valine (Val), I isoleucine (Ile)

Site Mutant Hydrophobicity fraction

The former The latter

Ala181 A181G 1.8 − 0.4
A181S 1.8 − 0.8

Met182 M182A 1.9 1.8
M182G 1.9 − 0.4
M182S 1.9 − 0.8

Met183 M183A 1.9 1.8
M183G 1.9 − 0.4
M183S 1.9 − 0.8

Ala184 A184G 1.8 − 0.4
A184S 1.8 − 0.8

Val185 V185A 4.2 1.8
V185G 4.2 − 0.4
V185S 4.2 − 0.8

Ile305 I305A 4.5 1.8
I305G 4.5 − 0.4
I305S 4.5 − 0.8

Fig. 2  Relative specific activity of WT and mutants. Error bars indi-
cated standard deviation (n = 3). **Represents an extremely signifi-
cant difference, p < 0.01

Fig. 3  Effects of SDS on activity and stability of WT and its mutants. 
A Relative activity of enzymes in different concentrations of SDS. 
B Stability of enzymes pre-incubated with 0.1% (w/v) SDS for 1 h. 
Error bars indicated standard deviation (n = 3). **Represents an 
extremely significant difference, p < 0.01. Enzyme activity without 
SDS pre-incubation was defined as 100%



98 Marine Life Science & Technology (2024) 6:93–101

1 3

target site. However, there was an obvious fluctuation on 
the loop formed by  Gly304-Asp316 and  Ser338-Glu342, which 
might lead to the swing of  Gly305 (Fig. 4F and Supplemen-
tary Fig. S3). This suggested that I305G became more flex-
ible around this site, which may be more conducive to SDS 
insertion and binding.

Hydrophobic regions usually refer to ligand-binding 
pockets in proteins, which are of great significance for pro-
teins to perform their biological functions. For example, 
mammalian sugar-recognizing F-box proteins commonly 
bind the N-glycans through a unique small hydrophobic 
pocket in their loops, initiating the degradation process of 
glycoproteins (Yoshida et al. 2019). Capsid proteins (CP) 
of many viruses have conserved hydrophobic pockets that 
play a crucial role in capsid assembly and virus germination 
(Aggarwal et al. 2017; Kumar et al. 2021). SDS could bind 
to proteins by predominantly hydrophobic interactions, and 
it was speculated that the resistance of VhChlABC to SDS 
might be due to the inhibition of their binding. In order to 
evaluate the interaction between enzyme and SDS, Auto-
Dock was used to dock the SDS into WT and its mutants. 
Take the mutant I305G, for example, the trajectory between 

40 and 50 ns of simulations were selected for further analy-
ses. The maximum cluster of structures in the simulated sys-
tems was used for molecular docking. SDS was predicted to 
bind in the hydrophobic pocket as illustrated in Fig. 5. More 
notably, the reduced hydrophobicity of residue 305 (I → G) 
affected the binding conformation between protein and SDS. 
Compared with WT, the hydrophobic hydrocarbon chain of 
SDS docked in I305G was inserted deeper into the hydro-
phobic pocket (Fig. 5). Furthermore, the RMSD analysis of 
the last 10 ns trajectory of SDS-protein complexes showed 
that the RMSD of SDS-mutants was lower than that of SDS-
WT, and the fluctuation was also significantly reduced, espe-
cially for the SDS-I305G complex (Supplementary Fig. S4). 
This result suggested that SDS could bind to the surface 
of mutant I305G more stably, which might lead to its SDS 
sensitivity.

Additionally, the binding free energy (ΔGbind) of SDS 
to enzyme was calculated based on MD simulations of 
SDS-enzyme complex using the gmx_MMPBSA (Valdés-
Tresanco et al. 2021). As the result, except for A184G, the 
affinity of the mutants with SDS was significantly higher 
than that of WT, and I305G showed the highest affinity 

Fig. 4  Calculation RMSF (Å) for VhChlABC (WT) and its mutants 
with a 40–50 ns trajectory. WT is shown in gray; A181G (A), M182A 
(B), M183A (C), A184G (D), V185A (E) and I305G (F) are shown 
in light blue, green, cyan, dark blue, orange and pink, respectively. 

The corresponding mutant sites are highlighted with red dots in the 
local RMSF map, and the two loops formed by  Gly304-Asp316 and 
 Ser338-Glu342 are marked by dashed box (F)
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(Fig. 6), which might be the key factor leading to the inhi-
bition of their activities by SDS. Additionally, the aver-
age ΔGbind of mutant A184G to SDS was not significantly 
different from that of WT, and its activity in the presence 
of SDS was close to that of WT (Fig. 3A). However, the 
SDS stability of mutant A184G was significantly lower 
than that of WT (Fig. 3B), indicating that residue  Ala184 
played an important role in maintaining the stability of the 
enzyme in SDS.

Effects of temperature and pH on VhChlABC 
and mutants

Other biochemical characterizations of mutants, includ-
ing optimum temperature, thermostability, optimum pH 
and pH stability, were also examined in this study. As the 
result, mutants A181G, M182A, M183A, A184G, V185A 
and I305G all exhibited the highest activity towards CS-A 
at 40 °C (Supplementary Fig. S5), and their initial activity 
maintained more than 90% and more than 60% post pre-
incubation at 0–30 °C and at 40 °C for 1 h (Supplemen-
tary Fig. S5), respectively, which were consistent with the 
VhChlABC. The decrease in SDS tolerance of the mutants 
was not accompanied by a decrease in temperature stabil-
ity, highlighting the close association between SDS toler-
ance and hydrophobicity of the residues at these sites. The 
optimal pH system of these six mutants was the same as 
that of WT, showing the highest activity in 50 mmol/L 
 Na2HPO4-NaH2PO4 buffer at pH 7.0 (Supplementary Fig. 
S6). However, the stability of the mutants rapidly decreased 
in glycine–NaOH buffer at a pH higher than 9.0 (Supple-
mentary Fig. S6), suggesting that the decrease in hydro-
phobicity of the corresponding mutant residue also played 
an important role in the stability of the enzyme in strongly 
alkaline solutions. Since the SDS-related tests in this study 
were carried out in  Na2HPO4-NaH2PO4 buffer with pH 7.0, 
the relationship between pH stability and SDS tolerance was 
not explored in depth.

Fig. 5  Binding conformation of SDS on the hydrophobic surface of enzyme molecules. A WT, B I305G

Fig. 6  Average binding free energy (ΔGbind) analysis of SDS to 
WT and its mutants. Error bars indicated standard deviation (n = 3). 
**Represents an extremely significant difference, p < 0.01
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Conclusion

In this study, the mechanism of VhChlABC resistance to SDS 
was investigated by combining bioinformatics analysis, site-
directed mutagenesis, MD simulation and molecular docking 
methods. Altogether, it was indicated that the hydrophobic 
microenvironment composed of residues  Ala181,  Met182, 
 Met183,  Ala184,  Val185, and  Ile305 on the surface of VhChlABC 
could prevent SDS from binding to this region and destroy-
ing its hydrophobic packaging by increasing the rigid confor-
mation of the hydrophobic pocket on the protein surface and 
decreasing the binding force between SDS and protein, which 
was the key structural basis for determining the resistance of 
protein to SDS.

The study on the SDS-resistant mechanism of VhChlABC 
provides a new strategy for the rational design of SDS-resist-
ant proteins, which is beneficial to obtain the phenotype more 
conveniently and efficiently. Moreover, this study may further 
advance the research process of chondroitinase in the targeted 
therapy of lung diseases, which might be constrained by the 
abundance of surfactants in the lung microenvironment.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42995- 023- 00201-1.
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