Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D (2008) The tale of two domains proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7:560-572 doi: 10.1074/mcp.M700271-MCP200
Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D, Couture JF (2011) Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Bol 3:301-308 doi: 10.1093/jmcb/mjr025
Adl SM, Simpson AG, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429-493 doi: 10.1111/j.1550-7408.2012.00644.x
Allis CD, Caparros M, Jenuwein T, Reinberg D (2015) Epigenetics, 2nd edn. Cold Spring Harbor Laboratory Press, New York
Al-Shar'i NA, Alnabulsi SM (2016) Explaining the autoinhibition of the SMYD enzyme family: a theoretical study. J Mol Graph Model 68:147-157 doi: 10.1016/j.jmgm.2016.07.001
Arsenault PR, Song D, Chung YJ, Khurana TS, Lee FS (2016) The zinc finger of prolyl hydroxylase domain protein 2 is essential for efficient hydroxylation of hypoxia-inducible factor α. Mol Cell Biol 36:2328-2343 doi: 10.1128/MCB.00090-16
Bachman AB, Keramisanou D, Xu W, Beebe K, Moses MA, Kumar MV, Gray G, Noor RE, van der Vaart A, Neckers L (2018) Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat Commun 9:265 doi: 10.1038/s41467-017-02711-w
Bagislar S, Sabò A, Kress TR, Doni M, Nicoli P, Campaner S, Amati B (2016) Smyd2 is a Myc-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget 7:66398-66415
Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491-507 doi: 10.1016/j.molcel.2012.11.006
Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65:8-24 doi: 10.1016/j.molcel.2016.11.003
Boehm D, Jeng M, Camus G, Gramatica A, Schwarzer R, Johnson JR, Hull PA, Montano M, Sakane N, Pagans S (2017) SMYD2-mediated histone methylation contributes to HIV-1 latency. Cell Host Microbe 21:569-579 doi: 10.1016/j.chom.2017.04.011
Brown MA, Sims RJ, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:1 
Buuh ZY, Lyu Z, Wang RE (2017) Interrogating the roles of post-translational modifications of non-histone proteins. J Med Chem 61:3239-3252 
Calpena E, Palau F, Espinós C, Galindo MI (2015) Evolutionary history of the smyd gene family in metazoans: a framework to identify the orthologs of human smyd genes in Drosophila and other animal species. PLoS ONE 10:e0134106 doi: 10.1371/journal.pone.0134106
Cao XJ, Arnaudo AM, Garcia BA (2013) Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8:477-485 doi: 10.4161/epi.24547
Cassidy-Hanley D, Bowen J, Lee JH, Cole E, VerPlank LA, Gaertig J, Gorovsky MA, Bruns PJ (1997) Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 146:135-147 
Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH, Doak TG, Stuart A, Amemiya CT, Sebra RP, Landweber LF (2014) The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158:1187-1198 doi: 10.1016/j.cell.2014.07.034
Chen X, Gao S, Liu YF, Wang YY, Wang YR, Song WB (2016) Enzymatic and chemical mapping of nucleosome distribution in purified micro-and macronuclei of the ciliated model organism, Tetrahymena thermophila. Sci China Life Sci 59:909-919 doi: 10.1007/s11427-016-5102-x
Chen Y, Tsai CH, Wang PY, Teng SC (2017) SMYD3 promotes homologous recombination via regulation of H3K4-mediated gene expression. Sci Rep 7:3842 doi: 10.1038/s41598-017-03385-6
Chen X, Wang YY, Sheng YL, Warren A, Gao S (2018) GPSit: an automated method for evolutionary analysis of nonculturable ciliated microeukaryotes. Mol Ecol Resour 18:700-713 doi: 10.1111/1755-0998.12750
Chen X, Jiang YH, Gao F, Zheng WB, Krock TJ, Stover NA, Lu C, Katz LA, Song WB (2019) Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 19:1292-1308 doi: 10.1111/1755-0998.13023
Cheng CY, Young JM, Lin CYG, Chao JL, Malik HS, Yao MC (2016) The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Gene Dev 30:2724-2736 doi: 10.1101/gad.290460.116
Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ (2004) Regulation of p53 activity through lysine methylation. Nature 432:353-360 doi: 10.1038/nature03117
Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164-1165 doi: 10.1093/bioinformatics/btr088
Diehl F, Brown MA, Van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, Ferrazzi F, Böttger T, Harvey RP, Tucker PW, Engel FB (2010) Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS ONE 5:e9748 doi: 10.1371/journal.pone.0009748
Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26:114-119 doi: 10.1101/gad.177758.111
Du SJ, Tan X, Zhang J (2014) SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec 297:1650-1662 doi: 10.1002/ar.22972
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797 doi: 10.1093/nar/gkh340
Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenet Chromatin 10:23 doi: 10.1186/s13072-017-0130-8
Feng LF, Wang GY, Hamilton EP, Xiong J, Yan GX, Chen K, Chen X, Dui W, Plemens A, Khadr L (2017) A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 45:9481-9502 doi: 10.1093/nar/gkx652
Gao S, Xiong J, Zhang CC, Berquist BR, Yang RD, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan DX, Qin ZH, Wen JF, Kapler GM, Andrews PC, Miao W, Liu YF (2013) Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 27:1662-1679 doi: 10.1101/gad.218966.113
Gao F, Warren A, Zhang QQ, Gong J, Miao M, Sun P, Xu DP, Huang J, Yi ZZ, Song WB (2016) The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6:24874 doi: 10.1038/srep24874
Giakountis A, Moulos P, Sarris ME, Hatzis P, Talianidis I (2017) Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol 42:70-80 doi: 10.1016/j.semcancer.2016.08.008
Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635-638 doi: 10.1016/j.cell.2007.02.006
Gordon A, Hannon G (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Unpublished Available online at: http://hannonlab.cshl.edu/fastx_toolkit/
Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25-32 doi: 10.1038/ng866
Guerin F, Arnaiz O, Boggetto N, Denby Wilkes C, Meyer E, Sperling L, Duharcourt S (2017) Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements. BMC Genom 18:327 doi: 10.1186/s12864-017-3713-7
Guillemette B, Drogaris P, Lin HHS, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E, Thibault P, Verreault A, Festenstein RJ (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7:e1001354 doi: 10.1371/journal.pgen.1001354
Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731-740 doi: 10.1038/ncb1151
Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y (2014) SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett 351:126-133 doi: 10.1016/j.canlet.2014.05.014
Hamamoto R, Saloura V, Nakamura Y (2015) Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 15:110-124 doi: 10.1038/nrc3884
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR et al (2016) Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 5:e19090 doi: 10.7554/eLife.19090
Herz HM, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38:621-639 doi: 10.1016/j.tibs.2013.09.004
Hu LP, Zhu YT, Qi C, Zhu YJ (2009) Identification of smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res 69:4067-4072 doi: 10.1158/0008-5472.CAN-08-4097
Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629-632 doi: 10.1038/nature05287
Huang JB, Zhang TT, Zhang QQ, Li Y, Warren A, Pan HB, Yan Y (2018) Further insights into the highly derived haptorids (Ciliophora, Litostomatea): phylogeny based on multigene data. Zool Scr 47:231-242 doi: 10.1111/zsc.12269
Hubert Á, Mitani Y, Tamura T, Boicu M, Nagy I (2014) Protein complex purification from Thermoplasma acidophilum using a phage display library. J Microbiol Meth 98:15-22 doi: 10.1016/j.mimet.2013.12.010
Hughes MA, Langlais C, Cain K, MacFarlane M (2013) Isolation, characterisation and reconstitution of cell death signalling complexes. Methods 61:98-104 doi: 10.1016/j.ymeth.2013.02.006
Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F, Reinberg D, Barlev NA (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27:6756-6769 doi: 10.1128/MCB.00460-07
Jakobsson ME, Małecki J, Nilges BS, Moen A, Leidel SA, Falnes Pø (2017) Methylation of human eukaryotic elongation factor alpha (eEF1A) by a member of a novel protein lysine methyltransferase family modulates mRNA translation. Nucleic Acids Res 45:8239-8254 doi: 10.1093/nar/gkx432
Jiang YY, Sirinupong N, Brunzelle J, Yang Z (2011) Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain. PLoS ONE 6:e21640 doi: 10.1371/journal.pone.0021640
Jiang F, Liu Q, Wang YL, Zhang J, Wang HM, Song TQ, Yang ML, Wang XH, Kang L (2017) Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects. GigaScience 6:1-16 
Karras GI, Yi S, Sahni N, Fischer M, Xie J, Vidal M, D'Andrea AD, Whitesell L, Lindquist S (2017) HSP90 shapes the consequences of human genetic variation. Cell 168:856-866 doi: 10.1016/j.cell.2017.01.023
Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291-303 
Lanouette S, Mongeon V, Figeys D, Couture JF (2014) The functional diversity of protein lysine methylation. Mol Syst Biol 10:724 doi: 10.1002/msb.134974
Leinhart K, Brown M (2011) SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes 2:210-218 doi: 10.3390/genes2010210
Levine AJ, Berger SL (2017) The interplay between epigenetic changes and the p53 protein in stem cells. Genes Dev 31:1195-1201 doi: 10.1101/gad.298984.117
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 doi: 10.1186/1471-2105-12-323
Li LX, Fan LX, Zhou JX, Grantham JJ, Calvet JP, Sage J, Li XG (2017) Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest 127:2751-2764 doi: 10.1172/JCI90921
Liu YF, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD (2007) RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev 21:1530-1545 doi: 10.1101/gad.1544207
Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167:233-247 doi: 10.1016/j.cell.2016.08.056
Luo XT, Yan Y, Shao C, Al-Farraj SA, Bourland WA, Song WB (2018) Morphological, ontogenetic and molecular data support strongylidiids as being closely related to Dorsomarginalia (Protozoa, Ciliophora) and reactivation of the family Strongylidiidae Fauré-Fremiet, 1961. Zool J Linn Soc-Lond 184:237-254 doi: 10.1093/zoolinnean/zly001
Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448-3449 doi: 10.1093/bioinformatics/bti551
Mao FB, Liu Q, Zhao XL, Yang HN, Guo S, Xiao LY, Li XF, Teng HJ, Sun ZS, Dou YL (2018) EpiDenovo: a platform for linking regulatory de novo mutations to developmental epigenetics and diseases. Nucleic Acids Res 46:D92-D99 doi: 10.1093/nar/gkx918
Mar JC, Wells CA, Quackenbush J (2011) Defining an informativeness metric for clustering gene expression data. Bioinformatics 27:1094-1100 doi: 10.1093/bioinformatics/btr074
Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, Tummino PJ, Kruger RG, Garcia BA, Butte AJ, Vermeulen M, Sage J, Gozani O (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510:283-287 doi: 10.1038/nature13320
Mazur PK, Gozani O, Sage J, Reynoird N (2016) Novel insights into the oncogenic function of the SMYD3 lysine methyltransferase. Transl Cancer Res 5:330-333 doi: 10.21037/tcr.2016.06.26
Miao W, Xiong J, Bowen J, Wang W, Liu Y, Braguinets O, Grigull J, Pearlman RE, Orias E, Gorovsky MA (2009) Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE 4:e4429 doi: 10.1371/journal.pone.0004429
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop, Institute of Electrical and Electronics Engineers, New Orleans, Louisiana
Moore KE, Gozani O (2014) An unexpected journey: lysine methylation across the proteome. BBA Gene Regul Mech 1839:1395-1403 
Noto T, Mochizuki K (2017) Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 7:170172 doi: 10.1098/rsob.170172
Noto T, Kataoka K, Suhren JH, Hayashi A, Woolcock KJ, Gorovsky MA, Mochizuki K (2015) Small-RNA-mediated genome-wide trans-recognition network in Tetrahymena DNA elimination. Mol Cell 59:229-242 doi: 10.1016/j.molcel.2015.05.024
Ohtomo-Oda R, Komatsu S, Mori T, Sekine S, Hirajima S, Yoshimoto S, Kanai Y, Otsuji E, Ikeda E, Tsuda H (2016) SMYD2 overexpression is associated with tumor cell proliferation and a worse outcome in human papillomavirus-unrelated nonmultiple head and neck carcinomas. Hum Pathol 49:145-155 doi: 10.1016/j.humpath.2015.08.025
Orias E, Hamilton EP, Orias JD (1999) Tetrahymena as a laboratory organism: useful strains, cell culture, and cell line maintenance. Methods Cell Biol 62:189-211 doi: 10.1016/S0091-679X(08)61530-7
Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63:2755-2763 doi: 10.1007/s00018-006-6274-5
Ramadoss S, Guo G, Wang CY (2017) Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene 36:47-59 doi: 10.1038/onc.2016.174
Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD (2015) Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS ONE 10:e0121765 doi: 10.1371/journal.pone.0121765
Sheng YL, He M, Zhao FQ, Shao C, Miao M (2018) Phylogenetic relationship analyses of complicated class Spirotrichea based on transcriptomes from three diverse microbial eukaryotes: Uroleptopsis citrina, Euplotes vannus and Protocruzia tuzeti. Mol Phylogenet Evol 129:338-345 doi: 10.1016/j.ympev.2018.06.025
Sima S, Richter K (2018) Regulation of the Hsp90 system. Biochem Biophys Acta 1865:889-897 doi: 10.1016/j.bbamcr.2018.03.008
Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L, Yang Z (2010) Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. J Biol Chem 285:40635-40644 doi: 10.1074/jbc.M110.168187
Sirinupong N, Brunzelle J, Doko E, Yang Z (2011) Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3. J Mol Biol 406:149-159 doi: 10.1016/j.jmb.2010.12.014
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16:1406-1428 doi: 10.3390/ijms16011406
Spellmon N, Sun X, Xue W, Holcomb J, Chakravarthy S, Shang W, Edwards B, Sirinupong N, Li C, Yang Z (2017) New open conformation of SMYD3 implicates conformational selection and allostery. AIMS Biophys 4:1-18 
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690 doi: 10.1093/bioinformatics/btl446
Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758-771 doi: 10.1080/10635150802429642
Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, Boutros M, Perrimon N, Rosenfeld MG, Glass CK (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48:28-38 doi: 10.1016/j.molcel.2012.07.020
Strzyz P (2016) Non-coding RNA: 7SK dampens transcription at super-enhancers. Nat Rev Mol Cell Biol 17:202 
Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515-528 doi: 10.1038/nrm2918
Thompson EC, Travers AA (2008) A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in development. PLoS ONE 3:e3008 doi: 10.1371/journal.pone.0003008
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S (2018) The smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr Opin Microbiol 1:140-152 
Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA (2013) Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. BBA Mol Cell Res 1833:812-822 
Walter J, Hümpel A (2017) Introduction to epigenetics. In: Heil R, Seitz S, König H, Robienski J (eds) Epigenetics, futures of technology, science and society. Springer, Wiesbaden, pp 11-29
Wang Q, Wang KY, Ye ML (2017a) Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst 142:3536-3548 doi: 10.1039/C7AN00954B
Wang YR, Wang YY, Sheng YL, Huang JB, Chen X, Al-Rasheid KAS, Gao S (2017b) A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. Eur J Protistol 61:376-387 doi: 10.1016/j.ejop.2017.06.006
Wang YY, Chen X, Sheng YL, Liu YF, Gao S (2017c) N6-adenine DNA methylation is associated with the linker DNA of H2A. Z-containing well-positioned nucleosomes in Pol Ⅱ-transcribed genes in Tetrahymena. Nucleic Acids Res 45:11594-11606 doi: 10.1093/nar/gkx883
Wang YY, Sheng YL, Liu YF, Pan B, Huang JB, Warren A, Gao S (2017d) N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. Eur J Protistol 58:94-102 doi: 10.1016/j.ejop.2016.12.003
Wang YR, Wang CD, Jiang YH, Katz LA, Gao F, Yan Y (2019) Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. Sci China Life Sci 62:203-214 doi: 10.1007/s11427-018-9422-5
Wickham H (2016) ggplot2: elegant graphics for data analysis, 2nd edn. Springer, New York
Woehrer SL, Aronica L, Suhren JH, Busch CJL, Noto T, Mochizuki K (2015) A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. EMBO J 34:559-577 doi: 10.15252/embj.201490062
Wozniak GG, Strahl BD (2014) Hitting the "mark": interpreting lysine methylation in the context of active transcription. BBA Gene Regul Mech 1839:1353-1361 
Wu LP, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, Dou YL (2013) ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell 49:1108-1120 doi: 10.1016/j.molcel.2013.01.033
Xiong J, Lu YM, Feng JM, Yuan DX, Tian M, Chang Y, Fu CJ, Wang GY, Zeng HH, Miao W (2013) Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database. https://doi.org/10.1093/database/bat008
Xu J, Bo T, Song WB, Wang W (2019a) Metabolomic fingerprint of the model ciliate, Tetrahymena thermophila determined by untargeted profiling using gas chromatography-mass spectrometry. J Ocean Univ China 18:654-662 doi: 10.1007/s11802-019-3974-7
Xu J, Li X, Song WB, Wang W, Gao S (2019b) Cyclin Cyc2 is required for elongation of meiotic micronucleus in the unicellular eukaryotic model organism Tetrahymena thermophila. Sci China Life Sci 62:668-680 doi: 10.1007/s11427-018-9369-3
Yan Y, Fan YB, Luo XT, El-Serehy HA, Bourland W, Chen XR (2018) New contribution to the species-rich genus Euplotes: morphology, ontogeny and systematic position of two species (Ciliophora; Euplotia). Eur J Protistol 64:20-39 doi: 10.1016/j.ejop.2018.03.003
Yi X, Jiang XJ, Li XY, Jiang DS (2017) Histone lysine methylation and congenital heart disease: from bench to bedside. Int J Mol Med 40:953-964 doi: 10.3892/ijmm.2017.3115
Zhang XD, Huang L, Wu T, Feng YF, Ding YY, Ye PF, Yin ZJ (2015) Transcriptomic analysis of ovaries from pigs with high and low litter size. PLoS ONE 10:e0139514 doi: 10.1371/journal.pone.0139514
Zhang TT, Wang CD, Laura AK, Gao F (2018) A paradox: rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protist, Ciliophora). Sci China Life Sci 61:1071-1078 doi: 10.1007/s11427-018-9333-1
Zhao XL, Wang YY, Wang YR, Liu YF, Gao S (2017) Histone methyltransferase TXR1 is required for both H3 and H3. 3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. Sci China Life Sci 60:264-270 
Zhao Y, Yi ZZ, Warren A, Song W (2018) Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proc Biol Sci 285:20172159 doi: 10.1098/rspb.2017.2159
Zhao XL, Xiong J, Mao FB, Sheng YL, Chen X, Feng LF, Dui W, Yang WT, Kapusta A, Feschotte C (2019) RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 33:348-364 doi: 10.1101/gad.320796.118
Zheng WB, Wang CD, Yan Y, Gao F, Doak TG, Song WB (2018) Insights into an extensively fragmented eukaryotic genome: de novo genome sequencing of the multinuclear ciliate Uroleptopsis citrina. Genome Biol Evol 10:883-894 doi: 10.1093/gbe/evy055
Zhou B, Wang JY, Lee SY, Xiong J, Bhanu N, Guo Q, Ma PL, Sun YQ, Rao RC, Garcia BA (2016) PRDM16 suppresses MLL1r leukemia via intrinsic histone methyltransferase activity. Mol Cell 62:222-236 doi: 10.1016/j.molcel.2016.03.010
Zhu Y, Zhu MX, Zhang XD, Xu XE, Wu ZY, Liao LD, Li LY, Xie YM, Wu JY, Zou HY (2016) SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma. Hum Pathol 52:153-163 doi: 10.1016/j.humpath.2016.01.012