Bertel D, Peck J, Quick TJ, Senko JM (2011) Iron transformations induced by anacid-tolerant Desulfosporosinus species. Appl Environ Microbiol 78: 81-88 
Bowman JP, Mccammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, Mcmeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(Ⅲ) reduction. Int J Syst Bacteriol 47: 1040-1047 doi: 10.1099/00207713-47-4-1040
Caporaso JG, KuczynskiJ, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336 doi: 10.1038/nmeth.f.303
Coates JD, Phillips EJ, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62: 1531-1536 
Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE (2011) Repeated anaerobic microbial redox cycling of iron. Appl Environ Microbiol 77: 6036-6042 doi: 10.1128/AEM.00276-11
Dalla VE, Suvorova EI, Maillard J, Bernierlatmani R (2014) Fe(Ⅲ) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. Geobiology 12: 48-61 doi: 10.1111/gbi.12067
Ding LJ, Su JQ, XuHJ, Jia ZJ, Zhu YG (2015) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME J 9: 721-734 doi: 10.1038/ismej.2014.159
Emerson D (2009) Potential for iron-reduction and iron-cycling in iron oxyhydroxide-rich microbial mats at Loihi Seamount. Geomicrobiol J 26: 639-647 doi: 10.1080/01490450903269985
Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64: 561-583 doi: 10.1146/annurev.micro.112408.134208
Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78: 4386-4399 doi: 10.1128/AEM.07637-11
Esther J, Sukla LB, Pradhan N, Panda S (2015) Fe(Ⅲ) reduction strategies of dissimilatory iron reducing bacteria. Korean J Chem Eng 32: 1-14 doi: 10.1007/s11814-014-0286-x
Feng Y, Yu Y, Tang H, Zu Q, ZhuJ, Lin X (2015) The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone. EnvironPollut 197: 195-202 
Gao H, Obraztova A, Stewart N, Popa R, Fredrickson JK, Tiedje JM, Nealson KH, Zhou J (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 56: 1911-1916 doi: 10.1099/ijs.0.64354-0
Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, Fredrickson JK, Tiedje JM, Zhou J (2009) Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J 3: 966-976 doi: 10.1038/ismej.2009.40
Gong J, Shi F, Ma B, Dong J, Pachiadaki M, Zhang X, Edgcomb VP (2015a) Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environ Microbiol 17: 3722 doi: 10.1111/1462-2920.12763
Gong Y, Yu Z, Yao Q, Chen H, Mi T, Tan J (2015b) Seasonal variation andsources of dissolved nutrients in the Yellow River, China. Int J Environ Res PublHealth 12: 9603-9622 doi: 10.3390/ijerph120809603
Haaijer SC, Crienen G, Jetten MS, den Camp HJO (2012) Anoxic iron cycling bacteria from an iron sulfide- and nitrate-rich freshwater environment. Front Microbiol 3: 26 
Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology 5: 191-237 doi: 10.1080/01490458709385971
Jones JG, Gardener S, Simon BM (1984) Reduction of ferric iron by heterotrophic bacteria in lake sediments. Microbiology 130: 45-51 doi: 10.1099/00221287-130-1-45
Stapleton RD, Sabree ZL, Palumbo AV, Moyer CL, Devol AH, Roh Y, Zhou J (2005) Metal reduction at cold temperatures by Shewanella isolates from various marine environments. Aquat Microb Ecol 38: 81-91 doi: 10.3354/ame038081
Kanso S, Greene AC, Patel BK (2002) Bacillus subterraneus sp. nov., an iron- and manganese- reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52: 869-874 
Kim SJ, Koh DC, Park SJ, Cha IT, Park JW, Na JH, Roh Y, Ko KS, Kim K, Rhee SK (2012) Molecular analysis of spatial variation of iron-reducing bacteria in riverine alluvial aquifers of the Mankyeong River. J Microbiol 50: 207-217 doi: 10.1007/s12275-012-1342-z
Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A (2015) Co-existence of microaerophilic, nitrate-reducing, and phototrophic Fe(Ⅱ)-oxidizers and Fe(Ⅲ)-reducers in coastal marine sediment. Appl EnvironMicrobiol 82: 1433-1447 
Li SN, Wang GX, Deng W, Hu YM, Hu WW (2009) Influence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta. Ecol Eng 35: 1719-1726 doi: 10.1016/j.ecoleng.2009.07.009
Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015) Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ Sci Technol 49: 11560-11568 doi: 10.1021/acs.est.5b03419
Li X, Zhang W, Liu T, Chen L, Chen P, Li F (2016) Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(Ⅱ) oxidation at circumneutral pH in paddy soil. Soil Biol Biochem 94: 70-79 doi: 10.1016/j.soilbio.2015.11.013
Liu SM, Zhang J, Jiang WS (2003) Pore water nutrient regeneration in shallow coastal Bohai Sea, China. J Oceanogr 59: 377-385 doi: 10.1023/A:1025576212927
Lovley D (2006) Dissimilatory Fe(Ⅲ)- and Mn(Ⅳ)-reducing prokaryotes, Theprokaryotes. Springer, pp. 635-658
Lovley D, Coates DJ, Ellis DJ, Gaw CV (1999) Geothrix ferrnentans gen. nov., sp. nov., a novel Fe(Ⅲ)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int JSyst Bacteriol 49: 1615-1622 doi: 10.1099/00207713-49-4-1615
Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction. Adv Microb Physiol 49: 219-286 doi: 10.1016/S0065-2911(04)49005-5
Lovley DR, Phillips EJ (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51: 683-689 
Lovley DR, Phillips EJ (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53: 1536-1540 
Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 53-63 doi: 10.1890/04-1724
MacDonald DJ, Findlay AJ, McAllister SM, Barnett JM, Hredzak-Showalter P, Krepski ST, Cone SG, Scott J, Bennett SK, Chan CS (2014) Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environ Sci: Processes Impacts 16: 2117-2126 doi: 10.1039/C4EM00073K
Mcbeth JM, Fleming EJ, Emerson D (2013) The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. Environ Microbiol Rep 5: 453-463 doi: 10.1111/1758-2229.12033
Naganuma T, Sato M, Hoshii D, Amano-Murakami Y, Iwatsuki T, Mandernack KW (2006) Isolation and characterization of Pseudomonas strains capable of Fe(Ⅲ) reduction with reference to redox response regulator genes. Geomicrobiol J 23: 145-155 doi: 10.1080/01490450600596565
Nealson K, Myers C, Wimpee B (1991) Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(Ⅳ)-reducing potential in the Black Sea. Deep Sea Res Part A 38: S907-S920 doi: 10.1016/S0198-0149(10)80016-0
Pérez-Rodríguez I, Rawls M, Coykendall DK, Foustoukos DI (2016) Deferrisoma palaeochoriense sp. nov., a thermophilic, iron(Ⅲ)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea. IntJ Syst Evol Microbiol 66: 830-836 doi: 10.1099/ijsem.0.000798
Pan G, Krom MD, Zhang M, Zhang X, Wang L, Dai L, Sheng Y, Mortimer RJ (2013) Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China). Environ Sci Technol 47: 9685-9692 doi: 10.1021/es4005619
Peng QA, Shaaban M, Wu Y, Hu R, Wang B, Wang J (2016) The diversity of iron reducing bacteria communities in subtropical paddy soils of China. Appl Soil Ecol 101: 20-27 doi: 10.1016/j.apsoil.2016.01.012
Perry K, Kostka J, Luther Ⅲ G, Nealson K (1993) Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259: 801 doi: 10.1126/science.259.5096.801
Poulton S, Raiswell R (2002) The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Amer J Sci 302: 774-805 doi: 10.2475/ajs.302.9.774
Qiao S, Yang Z, Pan Y, Guo Z (2007) Metals in suspended sediments from the Changjiang (Yangtze River) and Huanghe (Yellow River) to the sea, and their comparison. Estuar Coast Shelf Sci 74: 539-548 doi: 10.1016/j.ecss.2007.05.042
Roden EE, McBeth JM, Blöthe M, Percak-Dennett EM, Fleming EJ, Holyoke RR, Luther Ⅲ GW, Emerson D, Schieber J (2012) The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbiol 3: 172 
Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(Ⅲ) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41: 457-459 
Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ (2006) Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. strain PV-4. Appl Environ Microbiol 72: 3236-3244 doi: 10.1128/AEM.72.5.3236-3244.2006
Sand W (1989) Ferric iron reduction by Thiobacillus ferrooxidans at extremely low pH-values. Biogeochemistry 7: 195-201 doi: 10.1007/BF00004217
Sheng Y, Sun Q, Shi W, Bottrell S, Mortimer R (2015) Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China. Environ Earth Sci 74: 1151-1160 doi: 10.1007/s12665-015-4101-8
Slobodkina GB, Reysenbach AL, Panteleeva A, Kostrikina N, Wagner I, Bonch-Osmolovskaya E, Slobodkin AI (2012) Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(Ⅲ)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol 62: 2463-2468 doi: 10.1099/ijs.0.038372-0
Stookey LL (1970) Ferrozine-a new spectrophotometric reagent for iron. AnalChem 42: 779-781 
Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62: 1458-1460 
Sugio T, Uemura S, Makino I, Iwahori K, Tano T (1994) Sensitivity of iron-oxidizing bacteria, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, to bisulfite ion. Appl Environ Microbiol 60: 722-725 
Weber KA, Achenbach LA, Coates JD (2006a) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4: 752-764 doi: 10.1038/nrmicro1490
Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE (2006b) Anaerobic redox cycling of iron by freshwater sediment microorganisms. EnvironMicrobiol 8: 100-113
Xu Y, He Y, Feng X, Liang L, Xu J, Brookes PC, Wu J (2014) Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(Ⅲ) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. Sci Total Environ 473-474: 215 doi: 10.1016/j.scitotenv.2013.12.022
Zhang H, Zheng S, Ding J, Wang O, Liu F (2017) Spatial variation in bacterial community in natural wetland-river-sea ecosystems. J Basic Microbiol 57: 536-546 doi: 10.1002/jobm.201700041
Zheng S, Zhang H, Li Y, Zhang H, Wang O, Zhang J, Liu F (2015) Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron(Ⅲ)-reducing enrichment culture. Front Microbiol 6: 941