Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487-500 doi: 10.1038/nrg.2016.59
Allis CD, Glover CV, Bowen JK, Gorovsky MA (1980) Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote, Tetrahymena thermophila. Cell 20:609-617 doi: 10.1016/0092-8674(80)90307-4
Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Bio 14:211-224 doi: 10.1038/nrm3545
Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29:4319-4333 doi: 10.1093/nar/29.21.4319
Beh LY, Müller MM, Muir TW, Kaplan N, Landweber LF (2015) DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome. Genome Res 25:1727-1738 doi: 10.1101/gr.188516.114
Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht JR, Sebra RP, Muir TW, Landweber LF (2019) Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell 177:1781-1796 doi: 10.1016/j.cell.2019.04.028
Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505-530 doi: 10.1146/annurev-arplant-050213-035811
Berrens RV, Andrews S, Spensberger D, Santos F, Dean W, Gould P, Sharif J, Olova N, Chandra T, Koseki H, von Meyenn F, Reik W (2017) An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Cell Stem Cell 21:694-703 doi: 10.1016/j.stem.2017.10.004
Bird A (1992) The essentials of DNA methylation. Cell 70:5-8 doi: 10.1016/0092-8674(92)90526-I
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C (2018) Ten things you should know about transposable elements. Genome Biol 19:199 doi: 10.1186/s13059-018-1577-z
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298:1039-1043 doi: 10.1126/science.1076997
Chalker DL, Yao MC (2001) Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Genes Dev 15:1287-1298 doi: 10.1101/gad.884601
Chalker DL, Meyer E, Mochizuki K (2013) Epigenetics of ciliates. Cold Spring Harb Perspect Biol 5:a017764 doi: 10.1101/cshperspect.a017764
Chen X, Gao S, Liu YF, Wang YY, Wang YR, Song WB (2016) Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila. Sci China Life Sci 59:909-919 doi: 10.1007/s11427-016-5102-x
Coyne RS, Nikiforov MA, Smothers JF, Allis CD, Yao MC (1999) Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol Cell 4:865-872 doi: 10.1016/S1097-2765(00)80396-2
Coyne RS, Stover NA, Miao W (2012) Whole genome studies of Tetrahymena. Methods Cell Biol 109:53-81 doi: 10.1016/B978-0-12-385967-9.00004-9
Cyrus M, Yi Z (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838-849 doi: 10.1038/nrm1761
Czermin B, Melfi R, Mccabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185-196 doi: 10.1016/S0092-8674(02)00975-3
Ecco G, Imbeault M, Trono D (2017) KRAB zinc finger proteins. Development 144:2719-2729 doi: 10.1242/dev.132605
Fillingham JS, Thing TA, Vythilingum N, Keuroghlian A, Bruno D, Golding GB, Pearlman RE (2004) A non-long terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan Tetrahymena thermophila. Eukaryot Cell 3:157-169 doi: 10.1128/EC.3.1.157-169.2004
Freeling M, Xu J, Woodhouse M, Lisch D (2015) A solution to the C-value paradox and the function of junk DNA: the genome balance hypothesis. Mol Plant 8:899-910 doi: 10.1016/j.molp.2015.02.009
Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Doré LC (2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161:879-892 doi: 10.1016/j.cell.2015.04.010
Gao S, Xiong J, Zhang CC, Berquist BR, Yang RD, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan DX, Qin ZH, Wen JF, Kapler GM, Andrews PC, Miao W, Fan LY (2013) Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 27:1662-1679 doi: 10.1101/gad.218966.113
García-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Bio 17:553-563 doi: 10.1038/nrm.2016.88
Gershan JA, Karrer KM (2000) A family of developmentally excised DNA elements in Tetrahymena is under selective pressure to maintain an open reading frame encoding an integrase-like protein. Nucleic Acids Res 28:4105-4112 doi: 10.1093/nar/28.21.4105
Goodier JL (2016) Restricting retrotransposons: a review. Mobile DNA 7: 16
Gorovsky MA, Hattman S, Pleger GL (1973) [6N] methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol 56:697-701 doi: 10.1083/jcb.56.3.697
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C, Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868-878 doi: 10.1016/j.cell.2015.04.005
Guzzardo PM, Muerdter F, Hannon GJ (2013) The piRNA pathway in flies: highlights and future directions. Curr Opin Genet Dev 23:44-52 doi: 10.1016/j.gde.2012.12.003
Hamilton EP, Williamson S, Dunn S, Merriam V, Lin C, Vong L, Russell-Colantonio J, Orias E (2006) The highly conserved family of Tetrahymena thermophila chromosome breakage elements contains an invariant 10-base-pair core. Eukaryot Cell 5:771-780 doi: 10.1128/EC.5.4.771-780.2006
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR et al (2016) Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 5:e19090 doi: 10.7554/eLife.19090
Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA (2017) Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:774-786 doi: 10.1016/j.cell.2017.07.043
Harrison GS, Karrer KM (1985) DNA synthesis, methylation and degradation during conjugation in Tetrahymena thermophila. Nucleic Acids Res 13:73-87 doi: 10.1093/nar/13.1.73
Havas K, Whitehouse I, Owen-Hughes T (2001) ATP-dependent chromatin remodeling activities. Cell Mol Life Sci 58:673-682 doi: 10.1007/PL00000891
Hayashi T, Hayashi H, Fusauchi Y, Iwai K (1984) Tetrahymena histone H3. Purification and two variant sequences. J Biochem 95:1741-1749 doi: 10.1093/oxfordjournals.jbchem.a134788
Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol 7:a019364 doi: 10.1101/cshperspect.a019364
Huvos P (2004) A member of a repeat family is the source of an insertion-deletion polymorphism inside a developmentally eliminated sequence of Tetrahymena thermophila. J Mol Biol 336:1061-1073 doi: 10.1016/j.jmb.2003.12.064
Jacob Y, Feng S, Leblanc C, Bernatavichute Y, Stroud H, Cokus S, Johnson L, Pellegrini M, Jacobsen S, Michaels S (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763-768 doi: 10.1038/nsmb.1611
Jacob Y, Stroud H, LeBlanc C, Feng S, Zhuo L, Caro E, Hassel C, Gutierrez C, Michaels SD, Jacobsen SE (2010) Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466:987-991 doi: 10.1038/nature09290
Jacob Y, Bergamin E, Donoghue MT, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D (2014) Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343:1249-1253 doi: 10.1126/science.1248357
Jamieson K, Mcnaught KJ, Ormsby T, Leggett NA, Honda S, Selker EU (2017) Telomere repeats induce domains of H3K27 methylation in Neurospora. eLife 7:e31216
Jaskelioff M, Gavin IM, Peterson CL, Logie C (2000) SWI-SNF-mediated nucleosome remodeling: role of histone octamer mobility in the persistence of the remodeled state. Mol Cell Biol 20:3058-3068 doi: 10.1128/MCB.20.9.3058-3068.2000
Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18-36 doi: 10.1007/PL00006280
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074-1080 doi: 10.1126/science.1063127
Jürg M, Hart CM, Francis NJ, Vargas ML, Aditya S, Brigitte W, Miller EL, O'Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197-208 doi: 10.1016/S0092-8674(02)00976-5
Karrer KM (2012) Nuclear dualism. Methods Cell Biol 109:29-52 doi: 10.1016/B978-0-12-385967-9.00003-7
Klose RJ, Yi Z (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Bio 8:307-318 doi: 10.1038/nrm2143
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-359 doi: 10.1038/nmeth.1923
Lantermann AB, Straub T, Strålfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251-257 doi: 10.1038/nsmb.1741
Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SI (2013) Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155:1061-1074 doi: 10.1016/j.cell.2013.10.027
Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235-1244 doi: 10.1038/ng2117
Liang Z, Shen L, Cui X, Bao S, Geng Y, Yu G, Liang F, Xie S, Lu T, Gu X (2018) DNA N6-adenine methylation in Arabidopsis thaliana. Dev Cell 45:406-416 doi: 10.1016/j.devcel.2018.03.012
Lin YL, Pasero P (2017) Transcription-replication conflicts: orientation matters. Cell 170:603 doi: 10.1016/j.cell.2017.07.040
Liu YF, Mochizuki K, Gorovsky MA, Blackburn E (2004) Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc Natl Acad Sci USA 101:1679-1684 doi: 10.1073/pnas.0305421101
Liu YF, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD (2007) RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev 21:1530-1545 doi: 10.1101/gad.1544207
Liu N, Lee CH, Swigut T, Grow E, Gu B, Bassik MC, Wysocka J (2017) Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553:228-232 
Luo GZ, Hao Z, Luo L, Shen M, Sparvoli D, Zheng Y, Zhang Z, Weng X, Chen K, Cui Q (2018) N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biol 19:200 doi: 10.1186/s13059-018-1573-3
Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland
Madireddi MT, Coyne RS, Smothers JF, Mickey KM, Yao MC, Allis CD (1996) Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 87:75-84 doi: 10.1016/S0092-8674(00)81324-0
Malone CD, Anderson AM, Motl JA, Rexer CH, Chalker DL (2005) Germ line transcripts are processed by a dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol Cell Biol 25:9151-9164 doi: 10.1128/MCB.25.20.9151-9164.2005
Mochizuki K, Gorovsky MA (2004) RNA polymerase Ⅱ localizes in Tetrahymena thermophila meiotic micronuclei when micronuclear transcription associated with genome rearrangement occurs. Eukaryot Cell 3:1233-1240 doi: 10.1128/EC.3.5.1233-1240.2004
Mochizuki K, Gorovsky MA (2005) A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev 19:77-89 doi: 10.1101/gad.1265105
Molaro A, Malik HS (2016) Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr Opin Genet Dev 37:51-58 doi: 10.1016/j.gde.2015.12.001
Noto T, Mochizuki K (2017) Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 7:170172 doi: 10.1098/rsob.170172
Noto T, Kurth HM, Kataoka K, Aronica L, DeSouza LV, Siu KWM, Pearlman RE, Gorovsky MA, Mochizuki K (2010) The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell 140:692-703 doi: 10.1016/j.cell.2010.02.010
Noto T, Kataoka K, Suhren JH, Hayashi A, Woolcock KJ, Gorovsky MA, Mochizuki K (2015) Small-RNA-mediated genome-wide trans-recognition network in Tetrahymena DNA elimination. Mol Cell 59:229-242 doi: 10.1016/j.molcel.2015.05.024
Orias E, Cervantes MD, Hamilton EP (2011) Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res Microbiol 162:578-586 doi: 10.1016/j.resmic.2011.05.001
Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1-17 doi: 10.1007/PL00006275
Raynaud C, Sozzani R, Glab N, Domenichini S, Perennes C, Cella R, Kondorosi E, Bergounioux C (2006) Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis. Plant J 47:395-407 doi: 10.1111/j.1365-313X.2006.02799.x
Reisenauer A, Kahng LS, McCollum S, Shapiro L (1999) Bacterial DNA methylation: a cell cycle regulator? J Bacteriol 181:5135-5139 
Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette M et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928-1938 doi: 10.1038/emboj.2011.103
Ru C, Yi Z (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14:155-164 doi: 10.1016/j.gde.2004.02.001
Schiffers S, Ebert C, Rahimoff R, Kosmatchev O, Steinbacher J, Bohne AV, Spada F, Michalakis S, Nickelsen J, Müller M, Carell T (2017) Quantitative LC-MS provides no evidence for m6dA or m4dC in the genome of mouse embryonic stem cells and tissues. Angew Chem Int Ed 56:11268-11271 doi: 10.1002/anie.201700424
Schwope RM, Chalker DL (2014) Mutations in Pdd1 reveal distinct requirements for its chromodomain and chromoshadow domain in directing histone methylation and heterochromatin elimination. Eukaryot Cell 13:190-201 doi: 10.1128/EC.00219-13
Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18:735-748 doi: 10.1016/j.molcel.2005.05.003
Seth M, Shirayama M, Gu W, Ishidate T, Conte D, Mello CC (2013) The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev Cell 27:656-663 doi: 10.1016/j.devcel.2013.11.014
Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Bio 12:246-258 
Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461-472 doi: 10.1016/j.cell.2008.12.038
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41-45 doi: 10.1038/47412
Wang YY, Chen X, Sheng YL, Liu YF, Gao S (2017a) N6-adenine DNA methylation is associated with the linker DNA of H2A. Z-containing well-positioned nucleosomes in Pol Ⅱ-transcribed genes in Tetrahymena. Nucleic Acids Res 45:11594-11606 doi: 10.1093/nar/gkx883
Wang YY, Sheng YL, Liu YQ, Pan B, Huang J, Warren A, Gao S (2017b) N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. Eur J Protistol 58:94-102 doi: 10.1016/j.ejop.2016.12.003
Wang X, Li Z, Zhang Q, Li B, Lu C, Li W, Cheng T, Xia Q, Zhao P (2018) DNA methylation on N6-adenine in lepidopteran Bombyx mori. Biochim Biophys Acta- Gene Regul Mech 1861:815-825 doi: 10.1016/j.bbagrm.2018.07.013
Woehrer SL, Aronica L, Suhren JH, Busch CJL, Noto T, Mochizuki K (2015) A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. EMBO J 34:559-577 doi: 10.15252/embj.201490062
Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M (2016) DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532:329-333 doi: 10.1038/nature17640
Wuitschick JD, Gershan JA, Lochowicz AJ, Li S, Karrer KM (2002) A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila. Nucleic Acids Res 30:2524-2537 doi: 10.1093/nar/30.11.2524
Xiao CL, Zhu S, He M, Chen D, Zhang Q, Chen Y, Yu G, Liu J, Xie SQ, Luo F, Liang Z, Wang DP, Bo XC, Gu XF, Wang K, Yan GR (2018) N6-methyladenine DNA modification in the human genome. Mol Cell 71:306-318 doi: 10.1016/j.molcel.2018.06.015
Xie Q, Wu TP, Gimple RC, Li Z, Prager BC, Wu Q, Yu Y, Wang P, Wang Y, Gorkin DU, Zhang C, Dowiak AV, Lin K, Zeng C, Sui Y, Kim LJY, Miller TE, Jiang L, Lee CH, Huang Z et al (2018) N6-methyladenine DNA modification in glioblastoma. Cell 175:1228-1243 doi: 10.1016/j.cell.2018.10.006
Xiong J, Gao S, Dui W, Yang W, Chen X, Taverna SD, Pearlman RE, Ashlock W, Miao W, Liu Y (2016) Dissecting relative contributions of cis-and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin. Nucleic Acids Res 44:10091-10105
Xu J, Li X, Song W, Wang W, Gao S (2019) Cyclin Cyc2p is required for micronuclear bouquet formation in Tetrahymena thermophila. Sci China Life Sci 62:668-680 doi: 10.1007/s11427-018-9369-3
Yannick J, Hume S, Chantal L, Suhua F, Luting Z, Elena C, Christiane H, Crisanto G, Michaels SD, Jacobsen SE (2010) Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466:987-991 doi: 10.1038/nature09290
Yao B, Cheng Y, Wang Z, Li Y, Chen L, Huang L, Zhang W, Chen D, Wu H, Tang B, Jin P (2017) DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 8:1122 doi: 10.1038/s41467-017-01195-y
Zacharias W (1993) Methylation of cytosine influences the DNA structure. EXS 64:27-38 
Zhang CC, Molascon AJ, Gao S, Liu YF, Andrews PC (2013) Quantitative proteomics reveals that the specific methyltransferases Txr1p and Ezl2p differentially affect the mono-, di- and trimethylation states of histone H3 lysine 27 (H3K27). Mol Cell Proteomics 12:1678-1688 doi: 10.1074/mcp.M112.021733
Zhang GQ, Huang H, Liu D, Cheng Y, Liu XL, Zhang WX, Yin RC, Zhang DP, Zhang P, Liu JZ, Li CY, Liu BD, Luo YW, Zhu YX, Zhang N, He SM, He C, Wang HL, Chen DH (2015) N6-methyladenine DNA modification in Drosophila. Cell 161:893-906 doi: 10.1016/j.cell.2015.04.018
Zhang Y, Chang JF, Sun J, Chen L, Yang XM, Tang HY, Jing YY, Kang X, He ZM, Wu JY, Wei HM, Wang DL, Xu RG, Zhu RB, Shen Y, Zeng SY, Wang C, Liu KN, Zhang Y, Mao ZY et al (2018) Histone H3K27 methylation is required for NHEJ and genome stability by modulating the dynamics of FANCD2 on chromatin. J Cell Sci 131:jcs215525 doi: 10.1242/jcs.215525
Zhao XL, Wang YY, Wang YR, Liu YF, Gao S (2016) Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine27 methylation in the well-known ciliated protist Tetrahymena thermophila. Sci China Life Sci 60:264-270 
Zhao XL, Xiong J, Mao FB, Sheng YL, Chen X, Feng LF, Dui W, Yang WT, Kapusta A, Feschotte C, Coyne RS, Miao W, Gao S, Liu YF (2019) RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 33:348-364 doi: 10.1101/gad.320796.118
Zhou C, Wang CS, Liu HB, Zhou QW, Liu Q, Guo Y, Peng T, Song JM, Zhang JW, Chen LL, Zhao Y, Zeng ZX, Zhou DX (2018) Identification and analysis of adenine N6-methylation sites in the rice genome. Nat Plants 4:554-563 doi: 10.1038/s41477-018-0214-x